GOVERNO DO ESTADO DO RIO GRANDE DO SUL EGR - EMPRESA GAÚCHA DE RODOVIAS

PROJETO BÁSICO DE AUMENTO DE CAPACIDADE DA RODOVIA ERS-130

RODOVIA: ERS-130

TRECHO: Entr. RSC-453 (A) (p/ Venâncio Aires) – Entr. ERS-129 (p/ Roca Sales)

SEGMENTO: km 69+190 ao km 70+800

EXTENSÃO: 1,610 km

VOLUME ANEXO 1B - PROJETO DE OAE Acesso a BRF e acesso a Santa Clara do Sul

SUMÁRIO

SUMÁRIO

1.	APRESENTAÇÃO	04
2.	MAPA DE SITUAÇÃO	07
3.	PARTE I - RELATÓRIO	09
	A. MEMÓRIA DESCRITIVA B. MEMÓRIA DE CÁLCULO	
4.	PARTE II - ELEMENTOS GRÁFICOS	181
5	PARTE III – OUADRO DE OUANTIDADES	191

1 - APRESENTAÇÃO

1. APRESENTAÇÃO

O presente documento, denominado Volume Anexo 1B – Projeto de OAE, integra o Projeto Básico de Aumento de Capacidade da Rodovia ERS-130, no trecho Entr. RSC-453 (A) (p/ Venâncio Aires) – Entr. ERS-129 (p/ Roca Sales), com extensão de 28,10 km.

Apresenta a memória descritiva, memória de cálculo e plantas do Projeto de OAE, contendo a descrição dos estudos, cálculos e suas conclusões e recomendações da obra inserida no segmento do que vai km 69+500 ao km 70+800.

1.1. Dados do Contrato

O Projeto Básico de Aumento de Capacidade da Rodovia ERS-130 foi elaborado pela STE - Serviços Técnicos de Engenharia S.A. em conformidade com o Contrato nº 043/2018 firmado junto a Empresa Gaúcha de Rodovias (EGR).

Os dados básicos relativos ao contrato são:

Número do contrato: 043/2018

Data de início: 04/09/2018

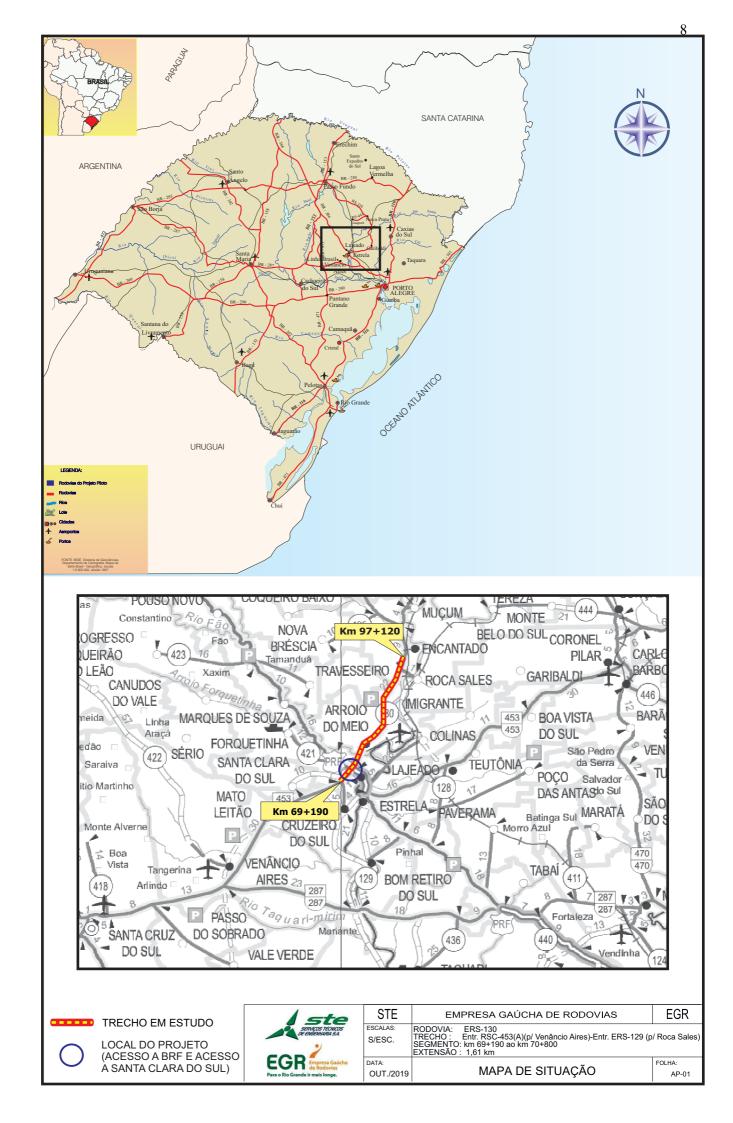
• Processo: 17/0496-0002393-7

 Objeto do contrato: Elaboração do Projeto Básico de aumento de capacidade da Rodovia ERS-130.

1.2. Volumes Integrantes do Projeto

O presente Projeto Básico de Engenharia é composto dos seguintes volumes:

- Volume 1 Relatório do Projeto e Detalhamento: contém a descrição dos estudos e projetos elaborados, bem como, os elementos gráficos dos projetos, com os detalhes e informações necessárias para a execução das obras.
- Volume 1A Projeto de Sinalização: contém os desenhos relativos ao Projeto de Sinalização, com os detalhes e informações necessárias à execução das obras.


- Volume 1B Projeto de OAE: contém as memórias e os desenhos relativos ao Projeto de OAE, com os detalhes e informações necessárias à execução das obras.
- Volume 2 Orçamento: apresenta o orçamento estimado de todos os serviços e obras necessárias à execução das obras.

Porto Alegre, outubro de 2019.

2 - MAPA DE SITUAÇÃO

3 – PARTE I - RELATÓRIO

A – MEMÓRIA DESCRITIVA

A. MEMÓRIA DESCRITIVA

1. Localização

Obra ser executada na ERS-130, no município de Lajeado.

2. Software Utilizado

Para a determinação dos esforços solicitantes será utilizado o programa computacional STRAP (Structural Analysis Program), versão PRO ADVANCED 2012, e o programa computacional SCIA Engineer, versão 15.

Estes programas serão utilizados para a geração da geometria do modelo, composição de cargas e verificação de resultados.

Para facilitar a construção de modelos estruturais, os programas estão divididos nas seguintes etapas:

- Geração da geometria: determinação das propriedades mecânicas das barras e dos elementos;
- Definição das condições de contorno (rotulas, apoios simples, engastes, molas, etc.);
- Definição dos carregamentos considerados (peso próprio, sobrecargas, cargas moveis, vento, etc.);
- Cálculo matricial do modelo;
- Verificação dos resultados.

Para o dimensionamento dos pilares foi utilizado o programa computacional PCalc.

Para o dimensionamento geotécnico das estacas foram utilizadas as planilhas de cálculo do site Engenharia.com.br – Programas de Fundações.

Para a confecção da parte gráfica do projeto foi utilizado o software AllPlan.

3. Características Gerais

• Tipo de obra: ERS130

• Situação geométrica: Em rampa

• Extensão: 26,50m

• N° de vãos:1

• Largura: 13,00m

• Trem tipo: TB 45

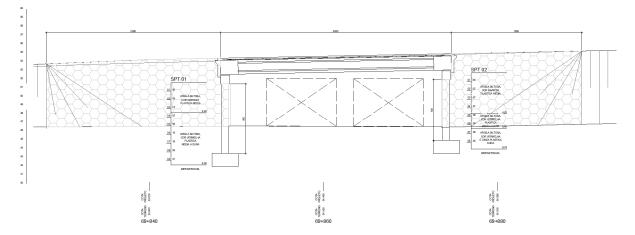


Figura A. 1: Vista lateral da obra

4. Características da Superestrutura

- **Longarinas:** 5 longarinas com seção "I", pré-fabricadas e protendidas. As longarinas possuem um afastamento de 2,65m entre si.
- Transversinas: 2 transversinas de apoio.
- Pré-laje: As lajes pré-fabricadas utilizadas no presente projeto são de dois tipos, lajes pré-fabricadas passantes para as vigas extremas e lajes pré-fabricadas intermediarias. Todas as lajes pré-fabricadas possuem altura de 10 cm e largura de 100cm.
- Laje: A espessura da laje será de 15 cm, como a inclinação de 2,0% para drenagem superficial será aplicada nos calços sob as longarinas, a espessura da laje será constante.
- Barreira: Serão utilizadas barreiras do tipo New Jersey em cada lado da pista de rolamento para delimitação do tráfego.

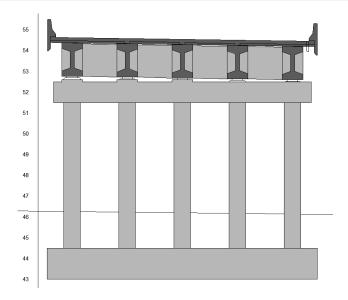


Figura A. 2: Projeção da seção transversal

5. Características da Meso-estrutura e Infraestrutura

- Encontros: Os encontros serão do tipo leve, formados por travessa e cortina.
- Sapatas: As sapatas possuem dimensões iguais a 300x1300x150.
- Pilares: Os pilares serão quadrados com dimensões iguais a 80x80.
- Laje de transição: A laje de transição será apoiada na cortina de entrada, o posicionamento da laje de transição deve respeitar o afastamento de 2cm da cortina.
 A laje de transição possui 400cm de largura e 30cm de espessura.

6. Carregamento móvel da estrutura

Segundo a NBR 7188/2014 a carga móvel rodoviária é composta de um veículo tipo e de cargas uniformemente distribuídas, de acordo com a tabela:

Cargas dos Veículos										
	V	eículo			Cargas Uniformemente Distribuídas					
Classe da Ponte	Tipo Peso Total		-	p		p'		Disposição da carga		
	1	kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²			
45	45	450	45	5	500	3	300	Carga p em toda a		
30	30	300	30	5	500	3	300	pista Carga p' nos		
12	12	120	12	4	400	3	300	passeios		

Tabela A. 1: Cargas dos veículos NBR7188/2014

Segundo a norma foi adotada, para fins de cálculo, a carga móvel rodoviário padrão TB-450, na qual a base do sistema é um veículo-tipo de 450 kN de peso total circundado por uma carga uniformemente distribuída constante de 5KN/m² (carga de multidão).

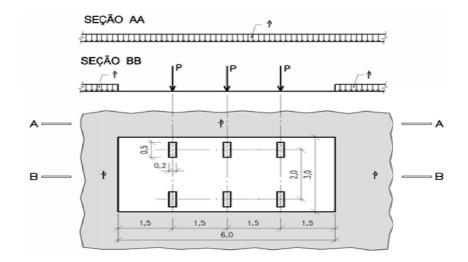


Figura A. 3: carga móvel

7. Classe de Agressividade

A classificação da classe de agressividade foi feita de acordo com a tabela 6.1 da NBR6118/2014

Classe de agressividade	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura
ambiental			
1	Fraca	Rural Submersa	Insignificante
II	Moderada	Urbana ^{a, b}	Pequeno
III	Forte	Marinha ^a Industrial ^{a, b}	Grande
IV	Muito forte	Industrial ^{a, c} Respingos de maré	Elevado

^a Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

Tabela A. 2: Tabela 6.1 NBR6118/2014 - Classe de agressividade ambiental

Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

A estrutura, em decorrência das suas condições executivas e localização, está classificada na Classe de Agressividade Ambiental II.

8. Materiais da Estrutura

Definida a classe de agressividade, podemos através da tabela 7.1 da NBR6118/2014 avaliar a relação água/cimento das peças, bem como as classes de concreto mínimas a serem adotadas para a estrutura.

Tabela 7.1 – Correspondência entre a classe de agressividade e a qualidade do concreto

Concreto ^a	Tipo ^{b, c}	Classe de agressividade (Tabela 6.1)				
Concreto	Tipo », ·	I	II	III	IV	
Relação água/cimento em	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45	
massa	СР	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45	
Classe de concreto	CA	≥ C20	≥ C25	≥ C30	≥ C40	
(ABNT NBR 8953)	СР	≥ C25	≥ C30	≥ C35	≥ C40	

a O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

Tabela A. 3: Tabela 7.1 NBR6118/2014 – Correspondência entre a classe de agressividade e a qualidade do concreto

Os principais materiais estruturais empregados na estrutura são:

Superestrutura:

- Concreto fck = 35 Mpa
- Relação água/cimento = 0,55
- Aço CA 50
- Aço CP 190 RB

Meso e infraestrutura:

- Concreto fck = 30 Mpa
- Relação água/cimento = 0,60
- Aço CA 50

b CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

Tipo de concreto estrutural	Classe de agressividade ambiental (CAA) e tipo de protensão	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar	
Concreto simples	CAA I a CAA IV	Não há	_	
	CAA I	ELS-W <i>w</i> _k ≤ 0,4 mm		
Concreto armado	CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm	Combinação frequente	
· ·	CAA IV	ELS-W <i>w</i> _k ≤ 0,2 mm		
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente	
Concreto	Pré-tração com CAA II	Verificar as duas condições abaixo		
protendido nível 2	ou	ELS-F	Combinação frequente	
(protensão limitada)	(protensão Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente	
Concreto	I B	Verificar as duas	s condições abaixo	
protendido nível 3 (protensão	Pré-tração com CAA III e IV	ELS-F	Combinação rara	
completa)		ELS-D ^a	Combinação frequente	

 $^{^{\}rm a}$ A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com $a_{\rm p}$ = 50 mm (Figura 3.1). NOTAS

Tabela A. 4: Tabela 13.4 NBR6118/2014 – Correspondência entre a classe de agressividade e a fissuração

9. Requisitos de Qualidade da Estrutura

Em conformidade com a Norma NBR 6118, da qual são transcritos os termos específicos e definições, a estrutura de concreto deve atender aos requisitos mínimos de qualidade durante sua construção e serviço, e aos requisitos adicionais estabelecidos em conjunto entre o autor do projeto estrutural e o contratante.

Os requisitos de qualidade de uma estrutura de concreto são classificados em três grupos distintos a seguir relacionados.

9.1. Capacidade Resistente

A capacidade resistente consiste basicamente na segurança à ruptura.

¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

9.2. Desempenho em Serviço

O desempenho em serviço consiste na capacidade de a estrutura manter-se em condições plenas de utilização, não devendo apresentar danos que comprometam em parte ou totalmente o uso para o qual foi projetada.

9.3. Durabilidade

Consiste na capacidade de a estrutura resistir às influências ambientais previstas e definidas em conjunto pelo autor do projeto estrutural e o contratante, no início dos trabalhos de elaboração do projeto.

10. Requisitos para Durabilidade da Estrutura

A estrutura de concreto deve ser construída de modo que sob as condições ambientais previstas na época do projeto e quando utilizadas conforme preconizado em projeto conserve sua segurança, estabilidade e aptidão em serviço durante o período correspondente à sua vida útil.

10.1. Agressividade do Ambiente

A agressividade do meio ambiente está relacionada às ações físicas e químicas que atuam sobre as estruturas de concreto, independentemente das ações mecânicas, das variações volumétricas de origem térmica, da retração hidráulica e outras previstas no dimensionamento das estruturas de concreto. No projeto da estrutura corrente, foi considerada a Classe de Agressividade Ambiental II de acordo com o apresentado na tabela 6.1 da NBR 6118.

10.2. Qualidade do Concreto

A durabilidade das estruturas é altamente dependente das características do concreto e da espessura e qualidade do concreto do cobrimento da armadura. Em decorrência da existência de uma forte correspondência entre a relação água/cimento, a resistência à compressão do concreto e sua durabilidade o concreto a ser utilizado na execução da estrutura deverá corresponder ao indicado no item 3.8 deste relatório.

10.3. Cobrimento

De acordo com a norma os cobrimentos nominais mínimos para as peças de concreto ficam assim definidos:

Tipo de elemento	Cobrimento nominal mínimo (mm)				
Tipo de dicinionio	I	П	Ш	IV	
Laje em concreto armado	20	25	35	45	
Viga/Pilar em concreto armado	25	35	40	50	
Elementos em contato com solo	30	30	40	50	
Laje protendida	25	30	40	50	
Viga/Pilar em concreto protendido	30	35	45	55	
Pilar em contato com o solo	45	45	45	50	

Tabela A. 5: Cobrimentos nominais mínimos – NBR6118/2014

CALCULO COBRIMENTO MINIMO

Classe de agressividade ambiental: 2,00 II

	Classe de agressividade ambiental				
CONCRETO ARMADO)				
Relação a/c	0,65	0,55	0,55	0,45	
Classe minima	20	25	30	40	

	Classe de agressividade ambiental				
CONCRETO PROTENDIDO	I II III IV				
Relação a/c	0,6	0,55	0,5	0,45	
Classe minima	25	30	35	40	

Tipo de elemento	Relação a/c	Classe minima de concreto (Mpa)	Classe adotada de concreto (Mpa)
Concreto armado	0,55	25	30
Concreto protendido	0,55	30	35

De acordo com a observação da norma podemos adotar redução de até 5mm no cobrimneto caso a Classe de concreto adotada seja superior a minima.

Tipo de elemento	Cobrimento minimo (mm)	Cobrimento reduzido (mm)	Cobrimento adotado (mm)
Laje em concreto armado	25	20	30
Viga/Pilar em concreto armado	30	25	30
Elementos em contato com solo	30	25	30
Laje protendida	30	25	30
Viga/Pilar em concreto protendido	35	30	30
Pilar em contato com o solo	45	40	40

11. Referência Bibliográfica

Os estudos e projetos atendem o prescrito na IS-214, bem como o Manual de Inspeção de Pontes Rodoviárias - DNIT/2004, publicação IPR-709, a Norma de Inspeções de Pontes - DNIT-010/2004-PRO, o Manual de Projeto de Obras de Arte Especiais - DNER/1996 e demais Normas da ABNT, aplicáveis ao caso.

- NBR 7187/2003 Projeto de pontes de concreto armado e protendido Procedimento – ABNT;
- NBR 7188/2013 Cargas móveis em pontes rodoviárias e passarela de pedestre –
 ABNT;
- NBR 6120/1980 Cargas para o cálculo de estruturas de edificações ABNT;
- NBR 8681/2003 Ações e Segurança nas estruturas Procedimento ABNT;
- NBR 6118/2014 Projeto de estruturas de concreto Procedimento ABNT;
- NBR 6122/2010 Projeto e execução de fundações ABNT.
- NBR 8800/2008 Projeto de estruturas de aço e estruturas mistas de aço e concreto ABNT.
- NBR 9062/2017 Projeto e execução de concreto pré-moldado ABNT
- Normas, manuais e especificações aplicáveis ao caso.

B – MEMÓRIA DE CÁLCULO

B. MEMÓRIA DE CÁLCULO

1. Características Geométricas

1.1. Pré Dimensionamento

No pré-dimensionamento busca-se obter através de relações empíricas as formas e as dimensões do conjunto de elementos que permite definir a alternativa de projeto mais adequada. Para o pré-dimensionamento devem ser respeitados os critérios apresentados no Manual de Projeto de Obras de Arte Especiais – DNER (1996) e no código Projeto de Pontes de Concreto Armado e de Concreto Protendido – NBR-7187 (2003),

A largura da seção transversal foi obtida somando-se os valores das larguras dos seguintes elementos necessários à mesma:

- Duas faixas de rolamento, largura de cada faixa: 3,60m;
- Acostamento: lado direito e esquerdo = 2,50m;
- Elementos de Proteção: barreiras = 0,40 m;

Desta forma se obteve para a ponte uma largura total de 13,00 metros.

Do ponto de vista de drenagem do tabuleiro, as seções transversais deverão atender a:

- Não possuir declividades transversais nulas.
- Sempre que possível, manter-se uma única situação transversal das pistas.

1.2. Pré Dimensionamento do tabuleiro Pré-moldado

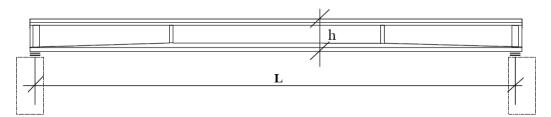


Figura B. 1: Vista Lateral

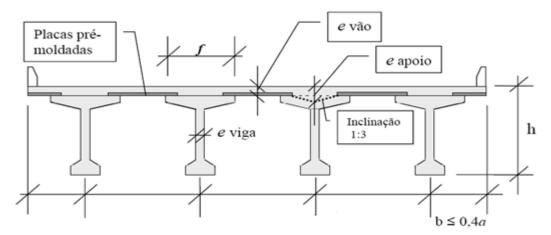


Figura B. 2: Seção Transversal

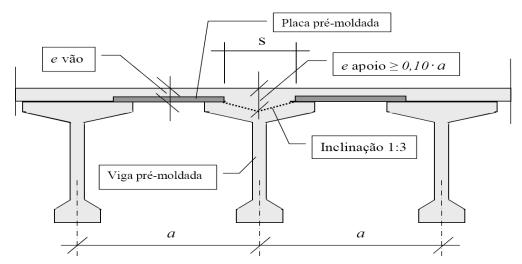
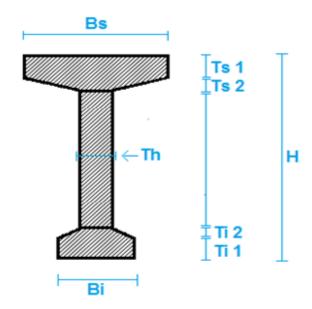


Figura B. 3: Seção Transversal



Comprimento adotado para a longarina (L):	26,50 m
Altura adotada para a longarina (H):	1,60 m
Relação L/H:	16,5625
Distancia minima entre vigas: Distancia máxima entre vigas: Distancia adotada entre vigas (a - adotado):	2,00 m 3,50 m 2,65 m
Largura minima da mesa superior:	0,424 m
Largura máxima da mesa superior:	0,88 m
Largura adotada para a mesa superior:	0,85 m
Balanço ideal para o tabuleiro:	1,06 m
Balanço adotado:	0,76 m
Espessura minima (e):	0,19875 m
Espessura adotada:	0,25 m
Espessura minima no apoio (e - apoio):	0,265 m
Espessura adotada no apoio:	0,29 m
Distancia adotada entre as bordas das lajotas:	0,25 m
Comprimento de apoio da lajota:	0,30 m

1.3. Longarinas

Н 1,60 m 0,85 Bs m Bi 1,00 m Ts1 0,25 m Ts2 0,15 m Th 0,20 m Ti1 0,25 m Ti2 0,15 m **X** * 0,85 m

^{*} Valor de Th nos apoios. Caso a largura da alma seja a mesma em toda a viga, ignorar este campo e deixá-lo em branco.

1.3.1. Laje Colaborante

Viga simplesmente apoiada: a = 1,00 L

Tramo com momento em uma só extremidade: a = 0,75 L

Tramo com momento nas duas extremidades: a = 0,60 L

Tramo em balanço: a = 2,00 L

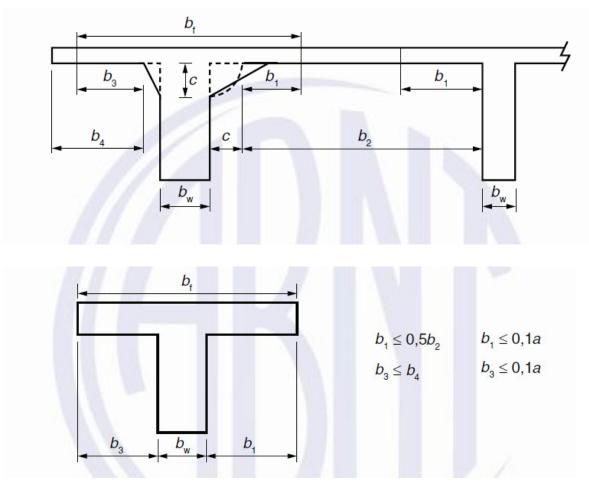


Figura B. 4: Largura da mesa colaborante NBR6118:2014

Vão livre:	26,50	m
a:	1,00	
Largura da mesa superior:	0,85	m
Distancia entre vigas:	2,65	m
bw:	0,20	m
b2:	1,80	m
b1:	0,90	m
c:	0,325	m
bf:	2,65	m

1.4. Laje e Lajotas

Espessura da lajota: 10 cm

Espessura da capa: 15 cm

Espessura da laje: 25 cm

Largura da laje: 1300 cm

Largura da lajota extrema: 357 cm

Largura da lajota interna: 240 cm

1.4.1. Vista Transversal

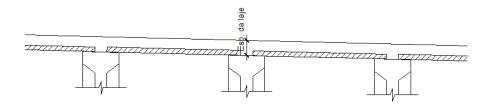


Figura B. 5: Vista Transversal

1.4.2. Lajota Externa

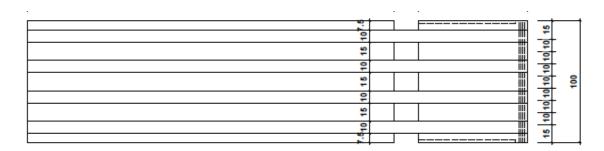


Figura B. 6: Vista Superior da Lajota extrema

1.4.3. Lajota Interna

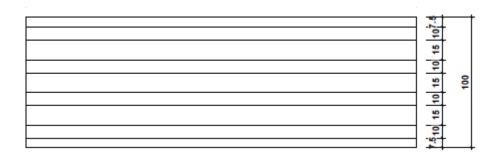


Figura B. 7: Vista superior da Lajota interna

1.5. Guarda Rodas

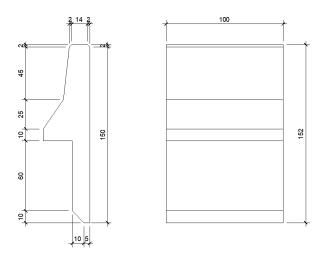


Figura B. 8: Seção Transversal e Longitudinal do Guarda Rodas

* O guarda rodas será adicionado no modelo de cálculo como carregamento.

Encontros

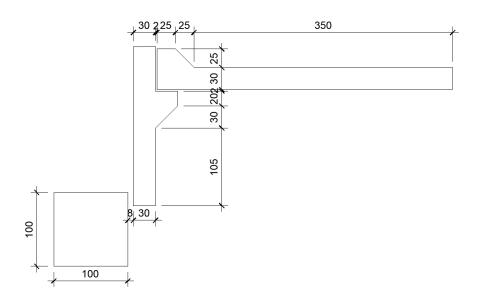


Figura B. 9: Seção transversal do Encontro

1.6. Propriedades no Programa Computacional

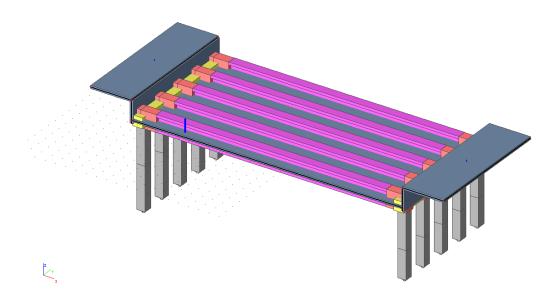


Figura B. 10: Modelo computacional de análise

2. Modelos para Cálculos

Para o correto dimensionamento da estrutura serão elaborados cinco (05) modelos de cálculo, sendo eles:

Modelo de Cálculo 01:

- Característica: Modelo de cálculo da superestrutura, em barras, sem protensão e sem molas.
- Objetivo: Dimensionamento da protensão.

Modelo de Cálculo 02:

- Característica: Modelo de cálculo da superestrutura, em barras, com protensão e com molas.
- Objetivo: Dimensionamento dos aparelhos de apoio.

Modelo de Cálculo 03:

- Característica: Modelo completo em barras, com protensão e com molas.
- Objetivo: Dimensionamento da armadura frouxa das longarinas, dimensionamento das transversinas, dimensionamento da mesoestrutura e dimensionamento da infraestrutura.

Modelo de Cálculo 04:

- Característica: Modelo de cálculo da superestrutura, em malhas, com protensão e com molas.
- Objetivo: Dimensionamento da laje e laje de transição.

Modelo de Cálculo 05:

- Característica: Modelo de cálculo da superestrutura, em barras, sem laje e guarda rodas, com molas.
- Objetivo: Dimensionamento das longarinas na pré-cura.

2.1. Modelo 1 – Definição da Protensão

2.1.1. Carregamentos Permanentes

Nas imagens a seguir as cargas apresentadas estão em toneladas. Após a modelagem da estrutura, foram considerados os seguintes carregamentos.

2.1.1.1. Peso próprio da Estrutura

O peso próprio é função do peso específico dos materiais em questão, exibidos conforme a tabela a seguir.

Material	V (tf/m³)	V (kN/m ³)	
Concreto Armado	2,5	25	
Concreto protendido	2,5	25	
Concreto Simples	2,2	22	
Aço	7,85	78,5	

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio.

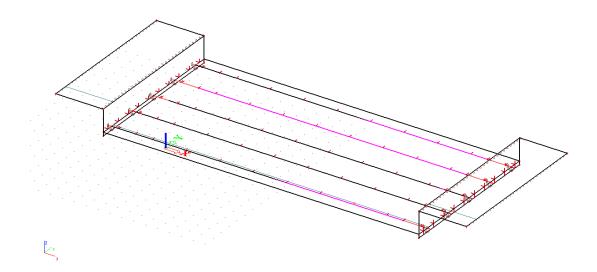


Figura B.11: Carga de Peso Próprio

2.1.1.2. Peso Próprio Guarda Rodas

O peso próprio é função do peso específico dos materiais e do volume de concreto. Para a determinação do peso por m de guarda rodas devemos calcular a correta área transversal da peça.

Área da seção transversal = 0.31 m^2

Peso por m linear = $0.31 \times 2.5 = 0.780 \text{tf/m}$

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio do Guarda Rodas.

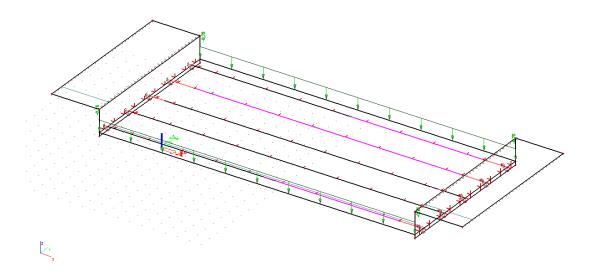


Figura B. 12: Carga do Guarda Rodas

2.1.1.3. Pavimentação e Recapeamento

Segundo a NBR 7187/2003 (Projeto de pontes de concreto armado e protendido – ABNT), deve-se considerar 24 kN/m³ (2400 kg/m³) para o carregamento correspondente a uma camada de 7,0 cm de CBUQ. Sendo assim:

CBUQ = Peso específico do material × Espessura da camada

$$CBUQ = 2400 \ kg \ / \ m^3 \times 0.07 \ m = 168 \ kg \ / \ m^2 = 0.168 \ tf \ / \ m^2$$

Para o cálculo a obra em questão também será considerada uma camada de recapeamento no valor de 0,2ton/m².

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.

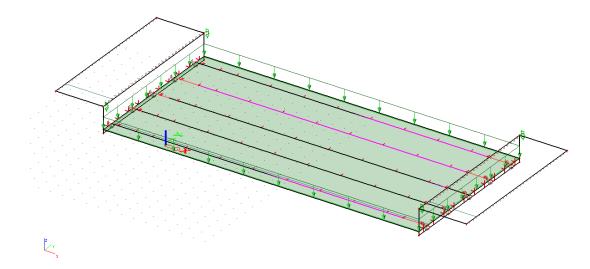


Figura B. 13: Carga de Pavimentação e Recapeamento

2.1.2. Carregamentos Variáveis

2.1.2.1. Carga Móvel: TREM TIPO E CARGA DE MULTIDÃO

Segundo a NBR 7188/2014 a carga móvel rodoviária é composta de um veículo tipo e de cargas uniformemente distribuídas, de acordo com a tabela:

Cargas dos Veículos										
	Veículo			Cargas Uniformemente Distribuídas						
Classe da Ponte	Tipo	Pes Tot		p		p'		Disposição da		
	-	kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²	carga		
45	45	450	45	5	500	3	300	Carga p em toda a		
30	30	300	30	5	500	3	300	pista Carga p' nos		
12	12	120	12	4	400	3	300	passeios		

Segundo a norma foi adotada, para fins de cálculo, a carga móvel rodoviário padrão TB-450, na qual a base do sistema é um veículo-tipo de 450 kN de peso total circundado por uma carga uniformemente distribuída constante de 5KN/m² (carga de multidão).

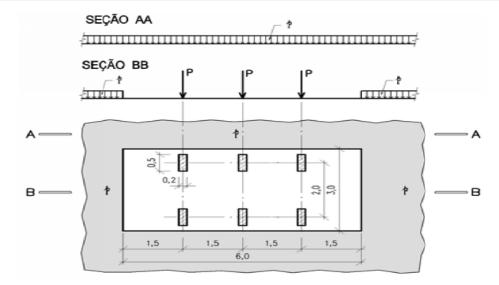


Figura B. 14: Trem-tipo

Veículo tipo

O veículo tipo possui 6 rodas com cargas verticais estáticas P = 75KN cada. Possui 3 eixos de carga afastados entre si 1,5m e de largura 2m. As cargas que constituem o trem-tipo, mantém entre si distâncias constantes, mas a sua posição com a linha de influência é variável e deve ser tal, que produza na seção considerada do elemento em estudo um máximo ou mínimo da solicitação. Diz ainda a NBR 7188/2014 que para obter efeitos mais desfavoráveis deve haver uma distância de 25 cm entre a roda do veículo e o guarda-rodas. Alem das cargas estáticas o veiculo tipo será inserido no modelo já amplificado por coeficientes de majoração conforme visto adiante.

Carga de multidão

A carga de multidão "p" é aplicada sobre todo o tabuleiro da estrutura. É uma carga fictícia, e procura levar em consideração a ocupação máxima de pessoas na estrutura. Segundo a NBR 7188/2014 deve-se considerar 500 kg/m² (0,5 ton. /m²) para a carga nas faixas de rodagem. Além desse valor estático a carga de multidão será inserida no modelo já amplificada por coeficientes de majoração conforme visto adiante. Para a fase de construção foi adotada uma carga de multidão no valor de 100kg/m².

Coeficientes de majoração das cargas móveis:

Conforme a norma NBR 7188/2014, além do efeito estático das cargas móveis, são aplicados coeficientes de impacto sob os valores de carregamento gerado tanto pelo veículo tipo como pela carga de multidão.

Conforme a norma a definição dos coeficientes de majoração das cargas móveis é apresentada da seguinte forma:

Veículo tipo: $Q = P \times CIV \times CNF \times CIA$, sendo:

Q = carga concentrada majorada

 $P = carga \ vertical \ estática = 75KN$

Carga de multidão: $q = p \times CIV \times CNF \times CIA$, sendo:

q = carga de multidão majorada

 $p = carga de multidão estática = 5KN/m^2$

A seguir são definidos os coeficientes de majoração:

CIV – Coeficiente de Impacto Vertical: amplifica a ação da carga estática simulando o efeito dinâmico da carga em movimento e a suspensão dos veículos automotores.

$$CIV = 1+1.06 \times (20/L +50)$$

Sendo L o vão de 26,5 m, temos:

$$CIV = 1.277$$

CNF: Coeficiente do Número de Faixas: corrige distorções estatísticas

$$CNF=1-0.05*(n-2)>0.9$$

n: número (inteiro) de faixas de tráfego rodoviário a serem carregadas sobre um tabuleiro transversalmente contínuo. Acostamentos e faixas de segurança não são faixas de tráfego da rodovia.

$$CNF = 1-0.05x (2-2) = 1.0$$

CIA: Coeficiente de Impacto Adicional: consiste em coeficiente destinado à majoração da carga móvel característica devido à imperfeição e/ou descontinuidade da pista de rolamento, no caso juntas de dilatação e nas extremidades das obras, estruturas de transição e acessos. Os esforços das cargas móveis verticais devem ser majorados na região das juntas estruturais e extremidades da obra. Todas as seções dos elementos estruturais a uma distância horizontal,

normal à junta, inferior a 5,0m para cada lado da junta ou descontinuidade estrutural, devem ser dimensionadas com os esforços das cargas móveis majorados pelo Coeficiente de Impacto Adicional, abaixo definido.

CIA = 1,25 para obras em concreto ou mistas

CIA = 1,15 para obras em aço

De tal forma a carga móvel é majorada e inserida no modelo de cálculo como segue:

Carga de multidão:

Para a região das juntas estruturais e extremidade da obra

$$q = p \times CIV \times CNF \times CIA = 5KN/m^2 \times 1,277 \times 1,0 \times 1,25 = 7,981N/m^2$$

Para o trecho corrente

$$q = p \times CIV \times CNF = 5KN/m^2 \times 1,277 \times 1,0 = 6,38KN/m^2$$

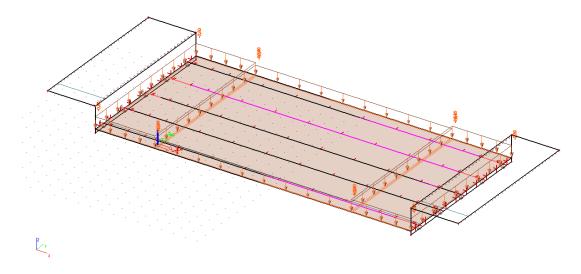


Figura B. 15: Cargas de multidão

Veículo tipo:

Para a região das juntas estruturais e extremidade da obra

Para o trecho corrente

$$Q = P \times CIV \times CNF = 75KN \times 1,277 \times 1,0 = 95,78KN$$

Dado que a carga de multidão majorada foi aplicada no modelo computacional em toda a área do tabuleiro podemos reduzir o valor dos veículos tipo na área do trem-tipo (18m²).

Para a região das juntas estruturais e extremidade da obra

$$Q = 119,72 - (7,981 \times 18/6) = 95,78KN$$

Para o trecho corrente

$$Q = 95,78 - (6,38 \times 18/6) = 76,64KN$$

As posições do veículo tipo são variáveis ao longo da linha de influência (pista de tráfego), exercendo, ao todo, 30 posições distintas por pista de tráfego com espaçamento entre veículos tipo constante. Segue, abaixo, o modelo de cálculo com a representação do veículo tipo.

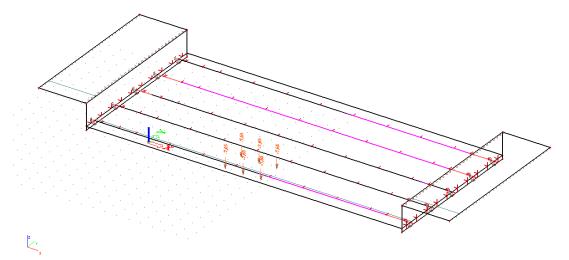


Figura B. 16: Carga de veículo tipo para trecho corrente

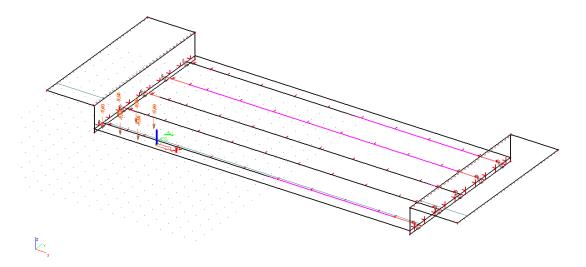


Figura B. 17: Carga de veículo tipo para a região das juntas estruturais e extremidade da obra

2.1.3. Grupo de Carga

CP: Carga permanente: - Peso próprio

- Peso próprio da estrutura
- Peso próprio do guarda rodas
- Pavimentação e recapeamento

CM: Cargas Móveis: - Cargas horizontais em "X"

• Trem tipo TT45 + Carga de multidão

2.1.4. Combinações

Estados limites: Os estados limites podem ser estados limites últimos ou de serviço. Os estados limites considerados nos projetos de estruturas dependem dos tipos de materiais de construção empregados e devem ser especificados pelas normas referentes ao projeto de estruturas com eles constituídas.

Estados limites de serviço:

No período de vida da estrutura, usualmente são considerados estados limites de serviço caracterizados por:

- Danos ligeiros ou localizados, que comprometam o aspecto estético da construção ou a durabilidade da estrutura;
- Deformações excessivas que afetem a utilização normal da construção ou seu aspecto estético;
- Vibração excessiva ou desconfortável.

Os estados limites de serviço decorrem de ações cujas combinações podem ter quatro diferentes ordens de grandeza de permanência na estrutura:

• Combinações carga permanente: Combinações que atuam durante todo o do período de vida da estrutura;

$$F_{cl,wtt} = \sum_{t=1}^{m} F_{Gl,K}$$

	CP	CM	CV	CT	FR
CCP	1				

• Combinações quase permanente: Combinações que podem atuar durante grande parte do período de vida da estrutura, da ordem da metade deste período;

$$F_{d,utt} = \sum_{t=1}^{m} F_{GI,K} + \sum_{j=1}^{n} \psi_{2j} F_{QJ,K}$$

	CP	CM	CV	CT	FR
CQP	1	0,3			

• Combinações frequentes: Combinações que se repetem muitas vezes durante o período de vida da estrutura, da ordem de 10⁵ vezes em 50 anos, ou que tenham duração total igual a uma parte não desprezível desse período, da ordem de 5%;

$$F_{d,uti} = \sum_{i=1}^{m} F_{GJ,K} + \psi_{1j} F_{QJ,K} + \sum_{j=2}^{n} \psi_{2j} F_{QJ,K}$$

VIGA LONGARINA	CP	CM	CV	CT	FR
CFS carga móvel - sem	1	0,5			
frenagem					

• Combinações raras: Combinações que podem atuar no máximo algumas horas durante o período de vida da estrutura.

$$F_{d,utt} = \sum_{i=1}^{m} F_{GI,K} + F_{Q1,K} + \sum_{j=2}^{n} \psi_{1j} F_{Qj,K}$$

	CP	CM	CV	CT	FR
CRS móvel	1	1			

2.1.5. Envoltórias de Combinações

Para o dimensionamento das peças estruturais serão retirados do programa envoltórias de combinações, sendo elas:

- Envoltória de combinação quase permanente;
- Envoltória de combinação frequente de serviço;
- Envoltória de combinação rara de serviço;

2.1.6. Esforços

2.1.6.1. Longarinas

Combinação carga permanente:

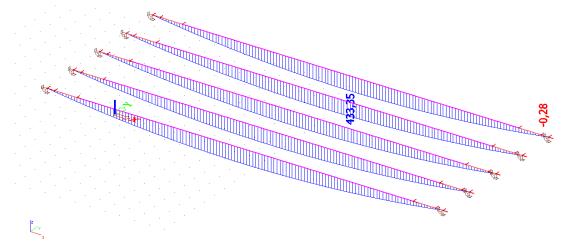


Figura B. 18: CCP - Momento M2 = 433,35 tfm

• Envoltória de combinação quase permanente

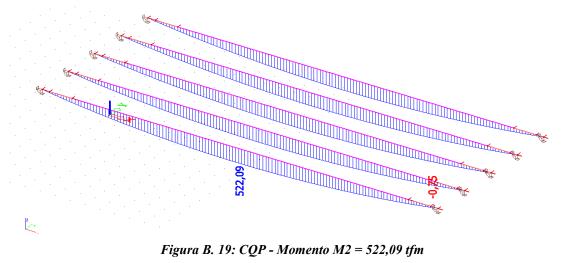


Figura B. 19: CQP - Momento M2 = 522,09 tfm

• Envoltória de combinação frequente de serviço:

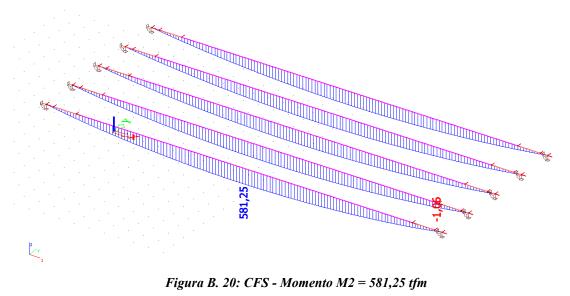


Figura B. 20: CFS - Momento M2 = 581,25 tfm

Envoltória de combinação rara de serviço:

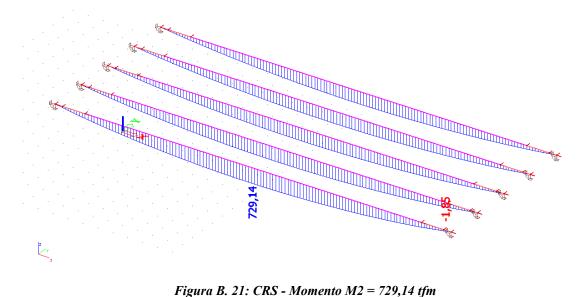


Figura B. 21: CRS - Momento M2 = 729,14 tfm

2.1.7. Dimensionamento

1 - DADOS

Comprimento da viga	26,50 m
Altura da viga	1,60 m
Largura da laje colaborante	2,00 m
Espessura da laje colaborante	0,25 m
Centróide da armadura frouxa	0,13 m
Centróide da protensão	0,12 m

2 - CRITÉRIOS:

As unidades utilizadas nesse memorial, exceto indicação contrária, são as seguintes:

2.1 - Momentos fletores: KN.m

2.2 - Esforços cortantes: KN

2.3 - Armaduras: cm²

3 - MATERIAIS UTILIZADOS

3.1 - Concreto

3.1.1 - Superestrutura 35 Mp

3.2 - Aço

3.2.1 - Armaduras passivas: Concreto armado 50 A ▼ 3.2.2 - Armaduras de protensão: Concreto protendido 190 ▼

4 - ESFORÇOS STRAP

Momentos fletores máximos para:

^ carregamento do peso proprio da viga (Mpp)	3037,8 KN.m
* combinação da carga permanente (Mcp)	4333,5 KN.m
* combinação quase-permanente (Mcqp)	5220,9 KN.m
* combinação frequente (Mcf)	5812,5 KN.m
* combinação rara de serviço (Mr)	7291,4 KN.m
* combinação última normal (Mu)	KN.m

6 - PROTENSÃO NECESSÁRIA NA SEÇÃO MAIS SOLICITADA

Tipo de protensão utilizada ==> O Protensão completa

Protensão utilizada

M: momento calculado

σi: tensão admissível nas fibras superiores

Wi: módulo resistente a flexão nas fibras inferiores

Ki: distância nuclear para as fibras inferiores

ep: excentricidade da força de protensão em relação ao CG

0,48388 m³
0,37473 m
1 01579 m

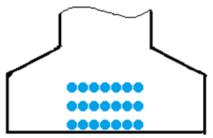
6.1 - Carregamento quase-permanente (CQP)

Utilizando estado limite de descompressão:	σt =	0	KN/cm ²
	M =	5220,9	KN.m
Força de protensão necessária (Pcqp):	Pcqp =	3754,63	KN

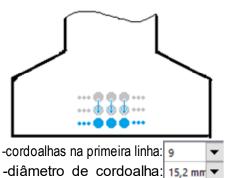
6.2 - Carregamento frequente

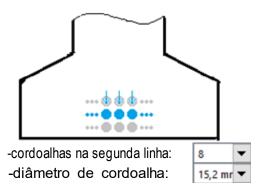
Utilizando estado lir	Utilizando estado limite de abertura de fissuras:		σt =	KN/cm ²
			M =	KN.m
Utilizando estado limite de formação de fissuras:			σt = 224	16,97 KN/cm ²
			M = 58	12,5 KN.m
Utilizando estado limite de descompressão:		σt =	0 KN/cm ²	
		M = 58	12,5 KN.m	
Força de protensão	necessária (Po	of) para:		
protensão parcial protensão limitada		protensã	o completa	
Pcf =	KN Pcf	= 3398,18 KN	Pcf = 418	30,09 KN

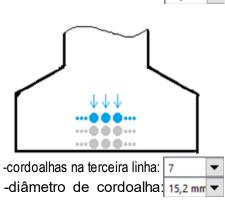
6.3 - Carregamento raro ou excepcional

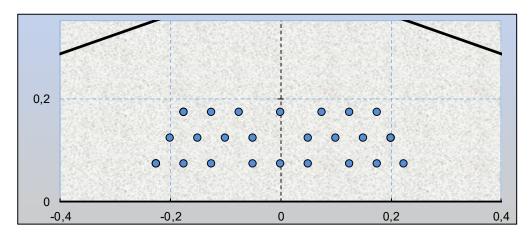

Utilizando estado limite de formação de fissuras:	σt = 2246,97 KN/cm²
	M = 7291,4 KN.m
Força de protensão necessária (Pcr):	Pcr = 4461,74 KN

6.4 - Força de protensão necessária adotada: $P\alpha = 3754,63$ KN






6.5 - Definição das cordoalhas de pré tensão



Os cabos serão dispostos em linhas horizontais na aba inferior.

Considerando um aço de baixa relaxação e uma perda de 17 % na protensão inicial, a força deverá ser de $\frac{4516,36}{4516,36}$ kN , sendo a força máxima suportável em cada cordoalha $\frac{23,1304}{19,5907238}$ tf , ou $\frac{192,185}{4516,36}$ kN .

Para este diâmetro de cordoalha (15,2mm) será necessário um número mínimo de <u>24 cordoalhas</u> . O número atual é de <u>24 cordoalhas</u> .

7-PERDAS

7.1 - Caracterísitcas do concreto e ambiente

cimento de alta risistência inicial (CP V) ▼ de endurecimento rápido ▼ e um abatimento entre 0cm - 4cm SLUMP ▼

C - temperatura média diária: 20 graus

Δtef - periodo em dias em que a temperatura média diária pode ser admitida constante: 10 dias.

to - idade ficticia do concreto em que o efeito da retração passa a ser considerado: 3 dias.

U - umidade relativa do ambiente : 75 %

γ - coeficiente dependente da umidade relativa do ambiente = 1,74082

Uar - perímetro externo da seção em contato com o ar: 602 cm

hfic - espessura fictícia da peça : 45,8 cm para coeficientes A, B, C, D e E

45,8 cm para ε_{2s} e φ_{2c}

7.2 - Características do aço protendido

Ep - módulo de elasticidade da armadura: 195000 Mpa , $\underline{1987768}$ $\underline{kgf/cm^2}$ Fptk - resistencia de ruptura : 1900 Mpa , $\underline{19368}$ $\underline{kgf/cm^2}$ Fpyk - resistencia de escoamento 0,2% : 1615 Mpa , 16462,8 $\underline{kgf/cm^2}$

Limites de tensão no instante da protensão

- aços de relaxação normal: 90% de Fpyk = 1453,5 Mpa , $\frac{14816,5}{13993,4}$ $\frac{\text{kgf/cm}^2}{\text{kgf/cm}^2}$ - aços de relaxação baixa: 85% de Fpyk = 1372,75 Mpa , $\frac{13993,4}{13993,4}$ $\frac{\text{kgf/cm}^2}{\text{kgf/cm}^2}$ Pi - protensão máxima aplicada pelo equipamento : 470177 Kgf , $\frac{470,177}{100}$ ton

Limites de tensão no instante da liberação das cordoalhas

- aços de relaxação normal: 87% de fpyk = 1405,05 Mpa, $\underline{14322,6}$ $\underline{kgf/cm^2}$ - aços de relaxação baixa: 82% de fpyk = 1324,3 Mpa, $\underline{13499,5}$ $\underline{kgf/cm^2}$ Po - prot. máxima na armadura no instante da liberação : 444965 Kgf , 444,965 ton

7.3 - Perdas imediatas

7.3.1 - Perdas no equipamento de protensão (escorregamento dos fios na ancoragem)

comprimento da pista de protensão 38 n

perda por escorregamento das cordoalhas: 2,25564 %

7.3.2 - Relaxação inicial da armadura

(período entre a aplicação do esforço de tração e da liberação das cordoalhas)

 $\Psi(t,to)$ 1000 - coeficiente de relaxação do aço do instante to ao instante t=1000 dias com temperatura ambiente de 20 graus :

classe de	tensão inicial		
relaxação	0,6 fptk	0,7 fptk	0,8 fptk
normal	3,5	7	12
baixa	1,5	2,5	3,5

$$=> 0.71 \text{ fptk} = 2.6 \%$$

dias entre a protensão nas cabeceiras e a liberação da armadura:

3

Ψ(t,t0) para 3 dias: 1,74389 %

7.3.3 - Retração

A: 40 B = 47,9368 C = 36,9127 D = 335,474 E = 106,261

(t) - idade fictícia do concreto: 10 dias

 $\beta s(tr)$ - coeficiente de retração no instante tr=0.03706 $\beta s(to)$ - coeficiente de retração no instante to=0.01267 $\epsilon cs(tr,to)$ - retração no intervalo de tempo $\epsilon tr=0.06$

 ΔT - perda de tensão no aço das cordoalhas = 18,7579 kgf/cm²

 $\Delta T = 18,758 \text{ kgf/cm}^2 = 0,18 \text{ kN/cm}^2 => 6,18 \text{ kN} = 0,63 \text{ tf} => 0,13 \%$

7.3.4 - Encurtamento do concreto no instante da liberação das cordoalhas

 E_c - módulo de elasticidade do concreto no instante da liberação das cordoalhas : 0,85 x 5600 x $\sqrt{F_{ck}}$ = 28160,5 Mpa

 A_c - área de concreto na seção : 7912,5 cm² , 0,79125 m²

J - momento de inércia da seção de concreto: 0,26 m⁴

 α_P - relação entre o módulo de elasticidade da armadura e o módulo de elasticidade do concreto : 6,92

Pi' - força máxima aplicada a armadura de protensão no instante da liberação descontadas as perdas iniciais por relaxação

As - área de aço nas cordoalhas

excentricidade da armadura resultante em relação ao baricentro da ep - seção de concreto

 Δ **p**₀ - perda imediata de tensão nas cordoalhas devido ao encurtamento elástico do concreto : α_P x (Pi / Ac + Pi x ep² / J)

Pf' - força relativa à perda de tensão : Δpo x As

Primeira linha - 9 cordoalhas

Segunda linha - 8 cordoalhas

Pi' = 1660,49 kN Pi' = 1475,99 kN $A_s = 12,6 \text{ cm}^2$ ep = -0.69 m ep = -0.64 m

 $\Delta p_0 = 35368,2 \text{ kN/m}^2$ $\Delta p_0 = 28845,3 \text{ kN/m}^2$ Pf' = 44.5639 kN Pf' = 32.3067 kN

Terceira linha - 7 cordoalhas

Pi' = 1291,49 kN

 $A_s = 9.8 \text{ cm}^2$ ep = -0.59 m

 $\Delta p_0 = 23141,6 \text{ kN/m}^2$

Pf' = 22,6788 kN

Total = 99,55 kN = 9,95 tf ==> 2,16 %

7.4.1 - Retração

 ξ_{1s} - coeficiente que depende da umidade ambiente : -0,0005 ξ_{2s} - coeficiente que depende da espessura ficticia : 0,78671

 $\epsilon_{cs_{\infty}}$ - valor final de retração : -3,87E-04

ΔT - perda de tensão no aço das cordoalhas = 769,118 kgf/cm²

 $\Delta T = 769,12 \text{ kgf/cm}^2 = 7,55 \text{ kN/cm}^2 => 254 \text{ kN} = 25,8 \text{ tf} => 5,5 \%$

7.4.2 - Fluência

(t) - idade fictícia do concreto: 30 dias

A= 312,80 B= 889,71 C= 665,34 D= 12146,97

 φ 1c - Coeficiente da umidade do ambiente : 1,36875

arphi 2c - Coeficiente relativo à espessura fictícia : 1,33

β_f(t_o) - Coeficiente relativo à deformação lenta irreversível em t_o: 0,12981

β_f(t_f) - Coeficiente relativo à deformação lenta irreversível em t: 0,33853

 β_1 - relação fc(to) / fc(t_) : 0.7841

 φ a - Coeficiente de Fluência Rápida : 0.17272

 φ f _ - Coeficiente de Deformação Lenta Reversível : 1,82667

 β d - Coeficiente relativo a deformação lenta reversível : 0,48454

 φ (t,t_o) - Coeficiente de fluência : 0,74779

Ec28 - Módulo de elasticidade do concreto: 33130 Mpa

momento da protensão = 447,55 tf.m = 4390,47 kN.m tensão nas cordoalhas (após perdas imediatas) = 13112,9 kgf/cm² = 128,638 kN/cm² tração no concreto (devido à carga permanente) = 139,373 kgf/cm² = 1,36725 kN/cm² compressão no concreto (devido à protensão) = 141,205 kgf/cm² = 1,38522 kN/cm²

 $\Delta T = 710,54 \text{ kgf/cm}^2 = 6,97 \text{ kN/cm}^2 => 234 \text{ kN} = 24 \text{ tf} => 5,1 \%$

Resumo das perdas				
imediatas				
perdas no equipamento	2,26 %			
relaxação inicial da armadura	1,74 %			
encurtamento do concreto	2,16 %			
retração do concreto	0,13 %			
progressivas				
retração do concreto	5,50 %			
fluência do concreto	5,08 %			
total 777,927 kN 79,30 tf	16,87 %			

Alongamento por cordoalha: $(A \times B) / (C \times D)$, onde

A = força aplicada à cordoalha = 19.6 tf

B = comprimento da cordoalha = 28,00 m

C = área nominal de aço da cordoalha = 1,4 cm²

D = módulo de elasticidade do aço = 195 Gpa

$$(A \times B) / (C \times D) = 20,1 \text{ cm}$$

Resumo da protensão	
tipo de protensão empregado:	limitada
tipo de aço empregado:	190
cordoalhas:	24 ø de 15mm
comprimento total das cordoalhas	672 m
quantidade total de aço nas cordoalhas	736,646 Kg
taxa de aço por volume de concreto	35,1317 Kg/m³
taxa de aço por protensão no vão	0,15971 Kg/KN
volume da viga:	20,9681 m ³
peso da viga (sem armadura frouxa):	52420,3 ton

2.2. Modelo 2 – Verificação dos Neoprenes

2.2.1. Carregamentos Permanentes

Nas imagens a seguir as cargas apresentadas estão em toneladas. Após a modelagem da estrutura, foram considerados os seguintes carregamentos.

2.2.1.1. Peso próprio da Estrutura

O peso próprio é função do peso específico dos materiais em questão, exibidos conforme a tabela a seguir.

Material	V (tf/m ³)	V (kN/m ³)
Concreto Armado	2,5	25
Concreto protendido	2,5	25
Concreto Simples	2,2	22
Aço	7,85	78,5

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio.

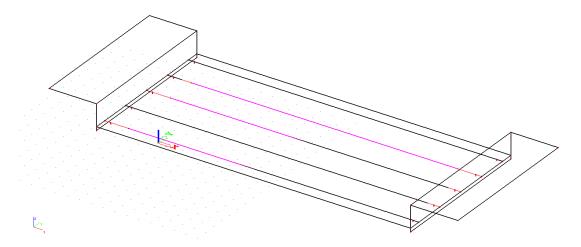


Figura B. 22: Carga de Peso Próprio

2.2.1.2. Peso Próprio Guarda Rodas

O peso próprio é função do peso específico dos materiais e do volume de concreto. Para a determinação do peso por m de guarda rodas devemos calcular a correta área transversal da peça.

Área da seção transversal = 0,31 m²

Peso por m linear = $0.31 \times 2.5 = 0.780 \text{tf/m}$

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio do Guarda Rodas.

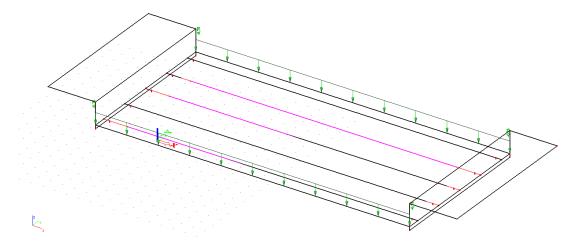


Figura B. 23: Carga de Guarda Rodas

2.2.1.3. Pavimentação e Recapeamento

Segundo a NBR 7187/2003 (Projeto de pontes de concreto armado e protendido – ABNT), deve-se considerar 24 kN/m³ (2400 kg/m³) para o carregamento correspondente a uma camada de 7,0 cm de CBUQ. Sendo assim:

CBUQ = Peso específico do material × Espessura da camada

$$CBUQ = 2400 \ kg \ / \ m^3 \times 0.07 \ m = 168 \ kg \ / \ m^2 = 0.168 \ tf \ / \ m^2$$

Para o cálculo a obra em questão também será considerada uma camada de recapeamento no valor de 0,2ton/m².

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.



Figura B. 24: Carga de Pavimentação e Recapeamento

2.2.1.4. Fluência e Retração do Concreto

De acordo com a NBR 6118/2014 o valor da retração do concreto depende de 3 fatores, sendo eles:

- Umidade relativa do ambiente;
- Consistência do concreto no lançamento
- Espessura fictícia da peça

Cálculo da fluência e retração:

Tabela 8.2 – Valores característicos superiores da deformação específica de retração $\varepsilon_{\text{CS}}\left(t_{\infty},t_{0}\right)$ e do coeficiente de fluência $\phi\left(t_{\infty},t_{0}\right)$ Umidade média ambiente 40 55 75 90

ambie	ambiente %		40		55		75		90	
Espessura 2A _c cm	/u	a	20	60	20	60	20	60	20	60
φ (t _∞ ,t ₀)		5	4,6	3,8	3,9	3,3	2,8	2,4	2,0	1,9
Concreto das classes		30	3,4	3,0	2,9	2,6	2,2	2,0	1,6	1,5
C20 a C45		60	2,9	2,7	2,5	2,3	1,9	1,8	1,4	1,4
$\varphi(t_{\infty},t_0)$		5	2,7	2,4	2,4	2,1	1,9	1,8	1,6	1,5
Concreto das classes	t ₀	30	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1
C50 a C90		60	1,7	1,6	1,5	1,4	1,2	1,2	1,0	1,0
		5	- 0,53	-0,47	- 0,48	- 0,43	- 0,3	6 - 0,32	- 0,18	- 0,15
$\varepsilon_{\tt CS}(t_{\scriptscriptstyle \odot},t_0)$ ‰		30	- 0,44	- 0,45	- 0,41	- 0,41	- 0,3	3 - 0,31	- 0,17	- 0,15
		60	- 0,39	-0,43	- 0,36	- 0,40	- 0,3	0 -0,31	- 0,17	- 0,15

RETRAÇÃO: REDUÇÃO DO VOLUME DE CONCRETO POR PERDA DE AGUA

Dados:

Umidade ambiente (%):75Área da seção de concreto (cm²):31750Perimetro da seção do concreto (cm):2590

Tempo inicial (to):

Coeficiente de dilatação termica (m/°C):

Espessura equivalente (cm):

Deformação esp. De retração (%o):

75
31750
2590
5
0,00001
24.52

24,52

-0,00035548

Gradiente de temperatura equivalente:	-35,55

FLUENCIA: AUMENTO DA DEFORMAÇÃO DEVIDO À UM CARREGAMENTO CONSTANTE

Dados:

Fck do concreto (Mpa):

Tensão aplicada ao concreto (Mpa):

Umidade ambiente (%):

75,00

Tempo inicial (to):

5,00

Eci:

33130,05

Deformação esp. Por fluencia (%o): 0,0001455 Coeficiente de dilatação termica (m/°C): 0,00001

Gradiente de temperatura equivalente:

14,55 °C

	P
20	2,80
24,52	2,75
60	2,40
	-

εcs

-0,36

-0,36

-0,32

20

24,52

60

iviateriai					
Basalto	1,2				
Granito	1				
Calcario	0,9				
Arenito	0,7				

Retração + Fluencia: -21,00

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.

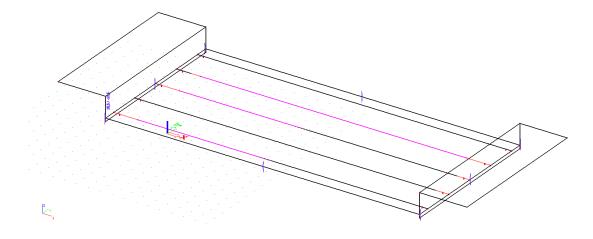


Figura B. 25: Carga de Retração

2.2.1.5. Carga de Protensão

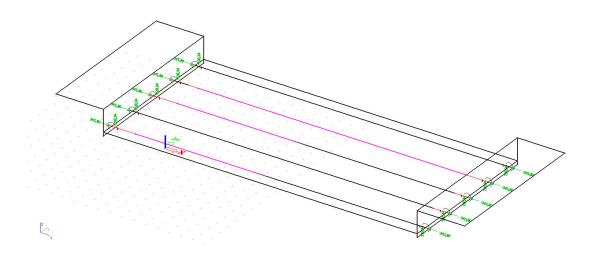


Figura B. 26: Carga de Protensão

2.2.2. Carregamentos Variáveis

2.2.2.1. Variação de Temperatura

A variação de temperatura da estrutura, causada globalmente pela variação da temperatura da atmosfera e pela isolação direta, é considerada uniforme. Ela depende do local de implantação da construção e das dimensões dos elementos estruturais que compõem.

De acordo com a NBR6118/2014 podem ser adotados os seguintes valores:

- Para elementos estruturais cuja menor dimensão a ser adotada não seja superior a 50cm, deve ser considerada uma oscilação de temperatura em torno da média de 10°C a 15°C;
- Para elementos estruturais maciços ou ocos, com espaços vazios inteiramente fechados, cuja menor dimensão seja superior a 70 cm, admite-se que essa oscilação seja reduzida respectivamente entre 5°C a 10°C;
- Para elementos estruturais cuja menor dimensão esteja entre 50 cm e 70 cm, admitese que seja feita uma interpolação linear entre os valores acima adotados.

A escolha entre esses dois limites pode ser feita considerando-se 50% da diferença entre as temperaturas médias de verão e inverno no local da obra.

Região	Temperatura média no inverno	Temperatura média no verão	Diferença ΔT	Diferença ΔT x 0,5
Norte	24°C	26°C	2°C	1°C
Nordeste	20°C	28°C	8°C	4°C
Sudeste	13°C	24°C	11°C	5,5°C
Sul	9°	24°C	15°C	7,5°C
Centro-Oeste	13°C	26°C	13°C	6,5°C

Para a presente obra será adotado o valor de 15°C para a coeficiente de variação de temperatura.

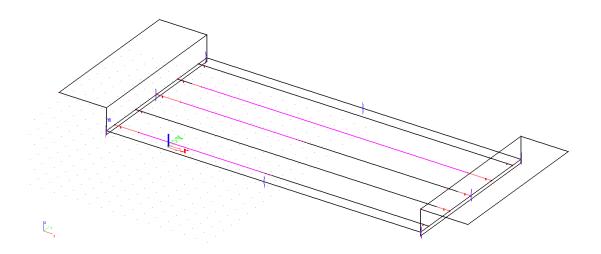


Figura B. 27: Carga de Variação de Temperatura

2.2.2.2. Vento

Velocidade básica Vo:	45	m/s	
Fator topografico S1:	1		
Rugosidade do terreno - Fator S2:	1,04		
Fator estatistico S3:	1,1		
Altura viga:	1,6	m	
Altura laje:	0,25	m	
		_	
Velocidade Caracteristica do vento:	51,48	m/s	
Pressão dinamica do vento:	1624,567	N/m^2	 0,162 tf/m ²
Coeficiente de arrasto:	1		
Altura ponte descarregada (viga + laje):	1,85	m	
Altura ponte carregada (viga + laje + 2m):	3,85	m	
Vento Ponte descarregada:	0,30	tf/m	
Vento Ponte carregada:	0,63	tf/m	

VENTO PONTE DESCARREGADA

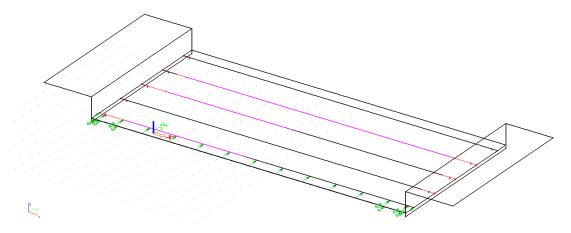


Figura B. 28: Carga de Vento para Ponte descarregada

VENTO PONTE CARREGADA

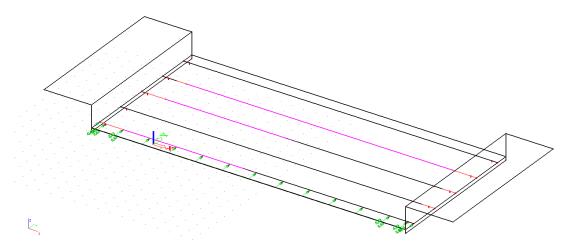


Figura B. 29: Carga de Vento para Ponte carregada

2.2.2.3. Carga Móvel: TREM TIPO E CARGA DE MULTIDÃO

Segundo a NBR 7188/2014 a carga móvel rodoviária é composta de um veículo tipo e de cargas uniformemente distribuídas, de acordo com a tabela:

Cargas dos Veículos										
	V	eículo		Cargas Uniformemente Distribuídas						
Classe da Ponte	Tipo	Peso Total		1	p	I.)'	Disposição da		
		kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²	carga		
45	45	450	45	5	500	3	300	Carga p em toda a		
30	30	300	30	5	500	3	300	pista Carga p' nos		
12	12	120	12	4	400	3	300	passeios		

Segundo a norma foi adotada, para fins de cálculo, a carga móvel rodoviário padrão TB-450, na qual a base do sistema é um veículo-tipo de 450 kN de peso total circundado por uma carga uniformemente distribuída constante de 5KN/m² (carga de multidão).

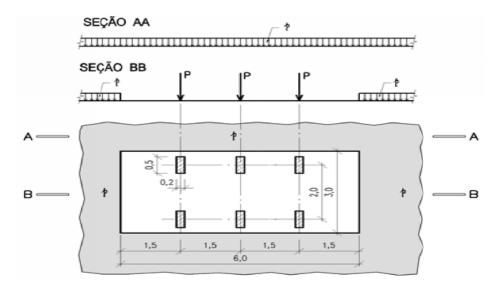


Figura B. 30: Trem tipo

Veículo tipo

O veículo tipo possui 6 rodas com cargas verticais estáticas P = 75KN cada. Possui 3 eixos de carga afastados entre si 1,5m e de largura 2m. As cargas que constituem o trem-tipo, mantém entre si distâncias constantes, mas a sua posição com a linha de influência é variável e deve ser tal, que produza na seção considerada do elemento em estudo um máximo ou mínimo da solicitação. Diz ainda a NBR 7188/2014 que para obter efeitos mais desfavoráveis deve haver uma distância de 25 cm entre a roda do veículo e o guarda-rodas. Alem das cargas estáticas o veiculo tipo será inserido no modelo já amplificado por coeficientes de majoração conforme visto adiante.

Carga de multidão

A carga de multidão "p" é aplicada sob todo o tabuleiro da estrutura. É uma carga fictícia, e procura levar em consideração a ocupação máxima de pessoas na estrutura. Segundo a NBR 7188/2014 deve-se considerar 500 kg/m² (0,5 ton. /m²) para a carga nas faixas de rodagem. Além desse valor estático a carga de multidão será inserida no modelo já amplificada por coeficientes de majoração conforme visto adiante. Para a fase de construção foi adotada uma carga de multidão no valor de 100kg/m².

Coeficientes de majoração das cargas móveis:

Conforme a norma NBR 7188/2014, além do efeito estático das cargas móveis, são aplicados coeficientes de impacto sob os valores de carregamento gerado tanto pelo veículo tipo como pela carga de multidão.

Conforme a norma a definição dos coeficientes de majoração das cargas móveis é apresentada da seguinte forma:

Veículo tipo: $Q = P \times CIV \times CNF \times CIA$, sendo:

Q = carga concentrada majorada

 $P = carga \ vertical \ estática = 75KN$

Carga de multidão: $q = p \times CIV \times CNF \times CIA$, sendo:

q = carga de multidão majorada

p = carga de multidão estática = 5KN/m²

A seguir são definidos os coeficientes de majoração:

CIV – Coeficiente de Impacto Vertical: amplifica a ação da carga estática simulando o efeito dinâmico da carga em movimento e a suspensão dos veículos automotores.

$$CIV = 1+1.06 \times (20/L +50)$$

Sendo L o vão de 26,5 m, temos:

$$CIV = 1,277$$

CNF: Coeficiente do Número de Faixas: corrige distorções estatísticas

$$CNF=1-0.05*(n-2)>0.9$$

n: número (inteiro) de faixas de tráfego rodoviário a serem carregadas sobre um tabuleiro transversalmente contínuo. Acostamentos e faixas de segurança não são faixas de tráfego da rodovia.

$$CNF = 1-0.05x (2-2) = 1.0$$

CIA: Coeficiente de Impacto Adicional: consiste em coeficiente destinado à majoração da carga móvel característica devido à imperfeição e/ou descontinuidade da pista de rolamento, no caso juntas de dilatação e nas extremidades das obras, estruturas de transição e acessos. Os esforços das cargas móveis verticais devem ser majorados na região das juntas estruturais e extremidades da obra. Todas as seções dos elementos estruturais a uma distância horizontal, normal à junta, inferior a 5,0m para cada lado da junta ou descontinuidade estrutural, devem ser dimensionadas com os esforços das cargas móveis majorados pelo Coeficiente de Impacto Adicional, abaixo definido.

CIA = 1,25 para obras em concreto ou mistas

CIA = 1,15 para obras em aço

De tal forma a carga móvel é majorada e inserida no modelo de cálculo como segue:

Carga de multidão:

Para a região das juntas estruturais e extremidade da obra

$$q = p \times CIV \times CNF \times CIA = 5KN/m^2 \times 1,277 \times 1,0 \times 1,25 = 7,981N/m^2$$

Para o trecho corrente

$$q = p \times CIV \times CNF = 5KN/m^2 \times 1,277 \times 1,0 = 6,38KN/m^2$$

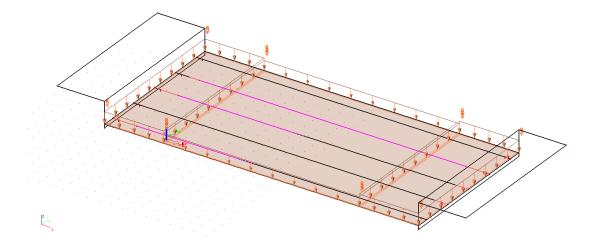


Figura B. 31: Cargas de multidão

Veículo tipo:

Para a região das juntas estruturais e extremidade da obra

$$Q = P \times CIV \times CNF \times CIA = 75KN \times 1,277 \times 1,0 \times 1,25 = 119,72KN$$

Para o trecho corrente

$$Q = P \times CIV \times CNF = 75KN \times 1,277 \times 1,0 = 95,78KN$$

Dado que a carga de multidão majorada foi aplicada no modelo computacional em toda a área do tabuleiro podemos reduzir o valor dos veículos tipo na área do trem-tipo (18m²).

Para a região das juntas estruturais e extremidade da obra

$$Q = 119,72 - (7,981 \times 18/6) = 95,78KN$$

Para o trecho corrente

$$Q = 95,78 - (6,38 \times 18/6) = 76,64KN$$

As posições do veículo tipo são variáveis ao longo da linha de influência (pista de tráfego), exercendo, ao todo, 30 posições distintas por pista de trafego com espaçamento entre veículos tipo constante. Segue, abaixo, o modelo de cálculo com a representação do veículo tipo.

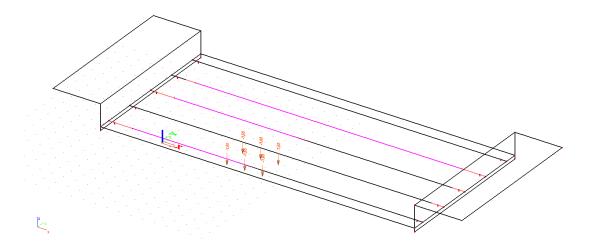


Figura B. 32: Carga de veículo tipo para trecho corrente

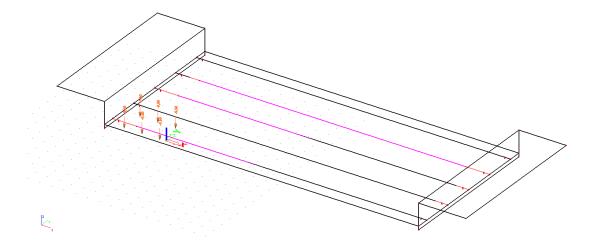


Figura B. 33: Carga de veículo tipo para a região das juntas estruturais e extremidade da obra

As cargas horizontais devido à frenagem e/ou aceleração, aplicados no nível do pavimento, são um percentual da carga vertical característica dos veículos aplicados sobre o tabuleiro, na posição mais desfavorável e concomitante com a respectiva carga vertical.

Hf=0,25*B*L*CNF, em [kN] onde:

 $Hf \ge 135kN$

B: largura efetiva [m] da carga distribuída de 5kN/m2.

L: comprimento concomitante [m] da carga distribuída.

$$Hf = 0.25 \times 12.70 \times 26.5 \times 1 = 84.14 \text{ KN}$$

Logo, o maior carregamento equivale a 0,040 tf/m². Segue, abaixo, o modelo de cálculo com a representação.

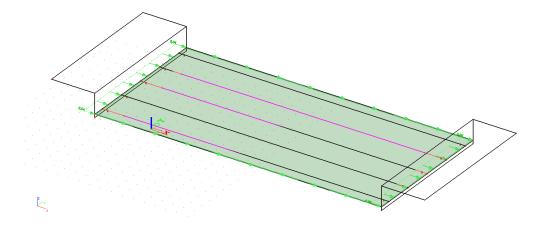


Figura B. 34: Carga de Frenagem ou Aceleração

2.2.3. Grupos de Carga

CP: Carga permanente: - Peso próprio

- Peso próprio da estrutura
- Peso próprio do guarda rodas
- Pavimentação e recapeamento
- Fluência e Retração
- Protensão (90% + Perdas)

CM: Cargas Móveis: - Cargas horizontais em "X"

• Trem tipo TT45 + Carga de multidão

CV: Cargas de Vento: - Cargas horizontais em "Y"

- Vento com Ponte Descarregada
- Vento com Ponte Carregada

CT: Cargas Térmicas:

• Variação de Temperatura

FR: Cargas variável: - Cargas horizontais em "X"

• Frenagem e aceleração

2.2.4. Combinações

Estados limites: Os estados limites podem ser estados limites últimos ou de serviço. Os estados limites considerados nos projetos de estruturas dependem dos tipos de materiais de construção empregados e devem ser especificados pelas normas referentes ao projeto de estruturas com eles constituídas.

Estados limites de serviço:

No período de vida da estrutura, usualmente são considerados estados limites de serviço caracterizados por:

- Danos ligeiros ou localizados, que comprometam o aspecto estético da construção ou a durabilidade da estrutura;
- Deformações excessivas que afetem a utilização normal da construção ou seu aspecto estético;
- Vibração excessiva ou desconfortável.

Os estados limites de serviço decorrem de ações cujas combinações podem ter quatro diferentes ordens de grandeza de permanência na estrutura:

• Combinações carga permanente: Combinações que atuam durante todo o do período de vida da estrutura;

$$F_{cl,wtt} = \sum_{t=1}^{m} F_{GL,K}$$

	CP	CM	CV	CT	FR
CCP	1				

• Combinações quase permanente: Combinações que podem atuar durante grande parte do período de vida da estrutura, da ordem da metade deste período;

$$F_{d,utt} = \sum_{t=1}^{m} F_{GI,K} + \sum_{j=1}^{n} \psi_{2j} F_{QJ,K}$$

	CP	CM	CV	CT	FR
CQP	1	0,3		0,3	0,2

• Combinações frequentes: Combinações que se repetem muitas vezes durante o período de vida da estrutura, da ordem de 10⁵ vezes em 50 anos, ou que tenham duração total igual a uma parte não desprezível desse período, da ordem de 5%;

$$F_{d,uti} = \sum_{i=1}^{m} F_{GJ,K} + \psi_{1j} F_{Q1,K} + \sum_{i=2}^{n} \psi_{2j} F_{QJ,K}$$

LAJE DO TABULEIRO	CP	CM	CV	CT	FR
CFS vento - sem frenagem	1	0,3	0,5		
CFS vento - com frenagem	1	0,3	0,5		0,3
CFS temperatura - sem frenagem	1	0,3		0,5	
CFS temperatura - com frenagem	1	0,3		0,5	0,3
CFS carga móvel - sem frenagem	1	0,5		0,3	
CFS carga móvel - com frenagem	1	0,5		0,3	0,5

VIGA LONGARINA	CP	CM	CV	CT	FR
CFS vento - sem frenagem	1	0,3	0,8		
CFS vento - com frenagem	1	0,3	0,8		0,3
CFS temperatura - sem	1	0,3		0,8	
frenagem					
CFS temperatura - com	1	0,3		0,8	0,3
frenagem					
CFS carga móvel - sem	1	0,8		0,3	
frenagem					
CFS carga móvel - com	1	0,8		0,3	0,8
frenagem					

• Combinações raras: Combinações que podem atuar no máximo algumas horas durante o período de vida da estrutura.

$$F_{d,utt} = \sum_{i=1}^{m} F_{GI,K} + F_{Q1,K} + \sum_{j=2}^{n} \psi_{1j} F_{Qj,K}$$

	CP	CM	CV	CT	FR
CRS móvel + vento - sem	1	1	0,8		
frenagem					
CRS móvel + vento - com	1	1	0,8		1
frenagem					
CRS móvel + temp sem	1	1		0,8	
frenagem					
CRS móvel + temp com	1	1		0,8	1
frenagem					

2.2.5. Envoltórias de Combinações

Para o dimensionamento das peças estruturais serão retirados do programa envoltórias de combinações, sendo elas:

- Envoltória de combinação quase permanente;
- Envoltória de combinação frequente de serviço;
- Envoltória de combinação rara de serviço;

2.2.6. Aparelhos de Apoio e Fretagem para Macaqueamento

cálculo de rigidez de neoprene de apoio fretado

Dados:		
Dureza shore do neoprene: G =	1000	KN/m²
Lado maior do aparelho: L1 =	0,5	m
Lado menor do aparelho: L2 =	0,3	m
Espessura da camada de neoprene:	0,01	m
Número de camadas de neoprene:	4	
Cobrimentos de neoprene:	0,0025	m

Rigidez de neoprene: 3333,3 KN/m \rightarrow 333,33 ton/m

2.2.6.1. Dimensionamento Aparelho de Apoio

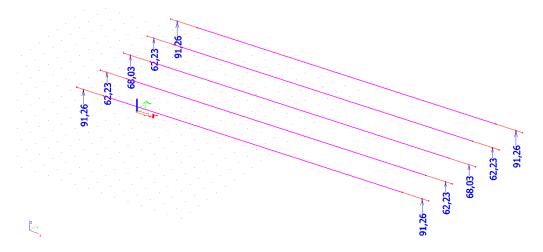


Figura B. 35: Carga Vertical Carga Permanente (91,26 tf)

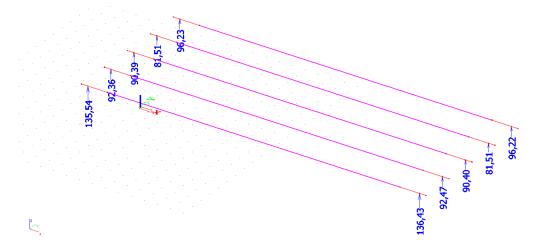


Figura B. 36: Carga Vertical (136,43 tf)

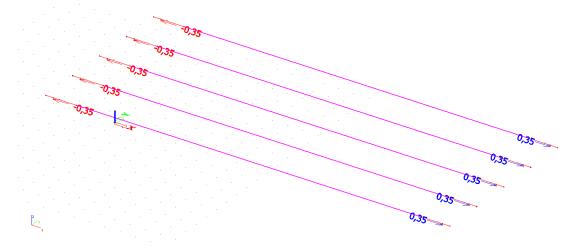


Figura B. 37: Esforço Longitudinal Carga Permanente (0,35 tf)

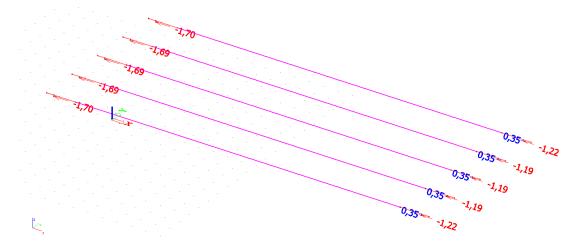


Figura B. 38: Esforço Longitudinal (1,70 tf)

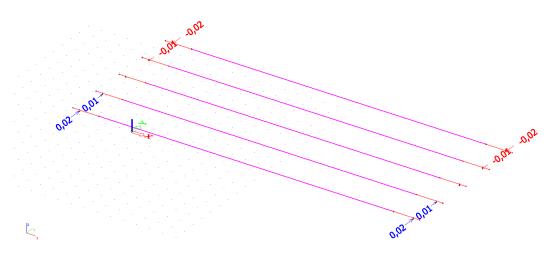


Figura B. 39: Esforço Transversal Carga Permanente (0,02 tf)

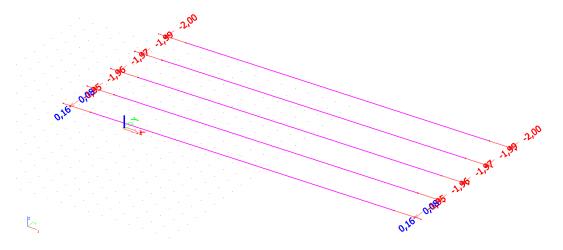


Figura B. 40: Esforço Transversal (2,00 tf)

Para o cálculo das deformações das vigas, foram utilizados os carregamentos permanentes e acidentais considerando o efeito da protensão. Os valores estão apresentados abaixo (valor expresso em milímetro)

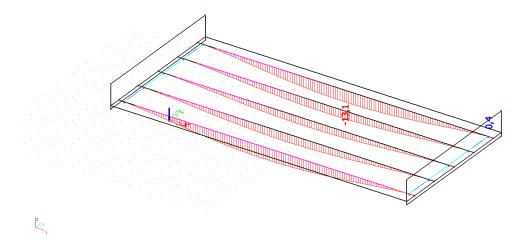


Figura B. 41: Flecha máxima CP (1,31 cm)

Flecha máxima admissível: 7,36 cm (L/360)

Rotação permanente= Arctg (1,31 / 1325) = 0,057 graus = 0,000995rd

Rotação acidental = Arctg (2,40 / 1325) = 0,10 graus = 0,001745rd

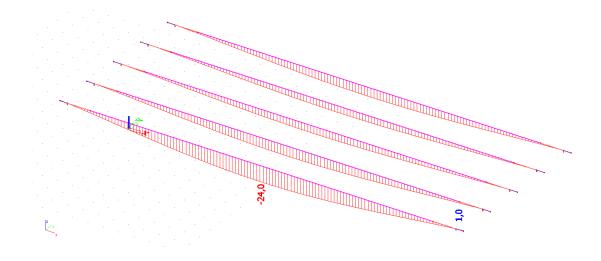


Figura B. 42: Flecha máxima (2,40 cm)

Figura B. 43: Deslocamento Longitudinal Carga Permanente (0,11 cm)

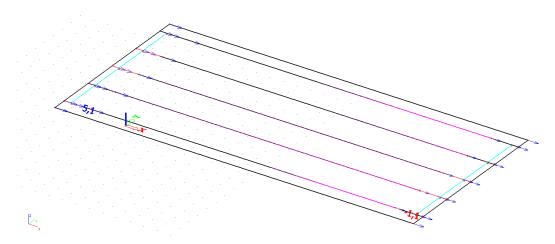


Figura B. 44: Deslocamento Longitudinal (0,51 cm)

2.2.7. Dimensionamento:

Rotação long. permanente 9,95E-04 rad Rotação long. acidental 1,75E-03 rad Horizontal long. permanente 350 kgf	comprimento do aparelho: sura camada de elastômero: ti altura total elastômero = n.ti G fyk to: concreto (6) ou demais (2)	1 4 10 2100
Rotação long. permanente Rotação long. acidental Horizontal long. permanente Horizontal long. permanente Horizontal long. acidental Deslocamento long. permanente Deslocamento long. acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tensão normal com área reduzida Tensão normal com área reduzida Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Tensão normal reduzida Tensão normal com área reduzida Tensão normal reduzida Tensão normal com área reduzida Tensão normal reduzid	altura total elastômero = n.ti G fyk	4 10 2100
Rotação long. acidental Horizontal long. permanente Horizontal long. acidental Deslocamento long. permanente Deslocamento long. acidental Deslocamento long. acidental Deslocamento total permanente Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Timin - deslizamento - cargas permanentes Timin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	G fyk	10 2100
Horizontal long. permanente Horizontal long. acidental Deslocamento long. permanente Deslocamento long. acidental Deslocamento long. acidental Deslocamento total permanente Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	fyk	2100
Horizontal long. acidental Deslocamento long. permanente Deslocamento long. acidental Deslocamento long. acidental Deslocamento total permanente Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Timin - deslizamento - cargas permanentes Timin - limitação deslocamento horizontal Timáx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	·	
Deslocamento long. permanente Deslocamento long. acidental Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Timin - deslizamento - cargas permanentes Timin - limitação deslocamento horizontal Timáx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	to: concreto (6) ou demais (2)	6
Deslocamento long. acidental Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Timin - deslizamento - cargas permanentes Timin - deslizamento - cargas totais Timin - limitação deslocamento horizontal Timáx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5		
Deslocamento total permanente Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5		
Deslocamento total acidental Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5		
Tensão normal considerando área total do aparelho Tensão normal com área reduzida Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,22	cm
Tensão normal com área reduzida Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,60	cm
Tensão normal permanente com área reduzida Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	91	kgf/cm2
Tmin - deslizamento - cargas permanentes Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	96,1	kgf/cm2
Tmin - deslizamento - cargas totais Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	63,0	kgf/cm2
Tmin - limitação deslocamento horizontal T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,18	cm
T _t máx para estabilidade Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,96	cm
Soma das deflexões das camadas internas Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	1,17	cm
Soma das deflexões das camadas de cobrimento Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	18,92	cm
Deflexão total Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,2550	cm
Rotação admissível pela análise da estabilidade Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,0037	cm
Rotação admissível sem considerar camadas cobrimento Rotação adicional permanente pelo limite deformação 5	0,2587	cm
Rotação adicional permanente pelo limite deformação 5	2,63E-02	rad
	2,59E-02	rad
Deformação de cisalhamento por esforços normais	2,72E-02	rad
	1,56	
Deformação de cisalhamento por esforços horizontais	0,18	
Deformação de cisalhamento devida às rotações	0,10	
Deformações totais por cisalhamento no elastômero	0,78	
Deformações totais por cisalhamento no cobrimento		
Espessura mínima para a chapa interna de aço	0,30	

espessura da chapa externa	3 mm
espessura da chapa interna	3 mm
cobrimento vertical	2,5 mm
cobrimento horizontal	2,5 mm
nº de aparelhos para uso	6 unidades
nº de aparelhos p/ ensaio	0 unidades

r de forma ti 9,24 r de forma cobrimento 26,4 tal 60,0 adm em area reduzida 150 adm em área reduzida 30 me Unitário 9,000
tal 60,0 adm em area reduzida 150 adm em área reduzida 30 me Unitário 9,000
adm em area reduzida 150 adm em área reduzida 30 me Unitário 9,000
adm em área reduzida 30 me Unitário 9,000
me Unitário 9,000
me Total para Compra 54,000
VERIFICAÇÃO PELO UIC-CODE
a deflexões cam.internas 0,098
a deflexões cam. cobrim. 0,001 d
exão total 0,100
adm. por estabilidade (K=1) 2,00E-02
, sem cam. cobrimento (K=1) 1,97E-02
adm. permanente 1,33E-02

2.3. Modelo 3 – Longarinas, Transversinas, Meso e Infraestrutura

2.3.1. Carregamentos Permanentes

Nas imagens a seguir as cargas apresentadas estão em toneladas. Após a modelagem da estrutura, foram considerados os seguintes carregamentos.

2.3.1.1. Peso Próprio da Estrutura

O peso próprio é função do peso específico dos materiais em questão, exibidos conforme a tabela a seguir.

Material	V (tf/m ³)	V (kN/m ³)
Concreto Armado	2,5	25
Concreto protendido	2,5	25
Concreto Simples	2,2	22
Aço	7,85	78,5

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio.

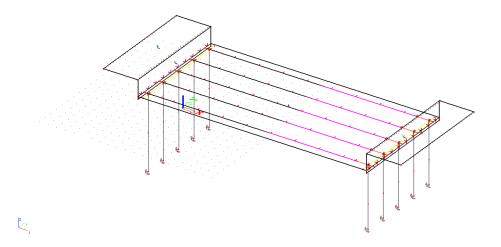


Figura B. 45: Carga de Peso Próprio

2.3.1.2. Peso Próprio Guarda Rodas

O peso próprio é função do peso específico dos materiais e do volume de concreto. Para a determinação do peso por m de guarda rodas devemos calcular a correta área transversal da peça.

Área da seção transversal = 0,31 m²

Peso por m linear = $0.31 \times 2.5 = 0.780 \text{tf/m}$

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio do Guarda Rodas.

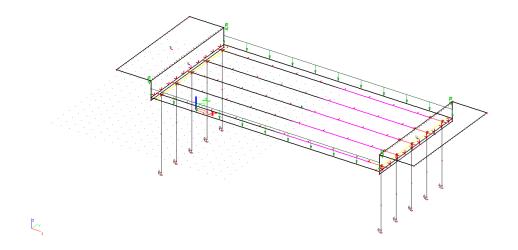


Figura B. 46: Carga de Guarda Rodas

2.3.1.3. Pavimentação e Recapeamento

Segundo a NBR 7187/2003 (Projeto de pontes de concreto armado e protendido – ABNT), deve-se considerar 24 kN/m³ (2400 kg/m³) para o carregamento correspondente a uma camada de 7,0 cm de CBUQ. Sendo assim:

CBUQ = Peso específico do material × Espessura da camada

$$CBUQ = 2400 \ kg \ / \ m^3 \times 0.07 \ m = 168 \ kg \ / \ m^2 = 0.168 \ tf \ / \ m^2$$

Para o cálculo a obra em questão também será considerada uma camada de recapeamento no valor de 0,2ton/m².

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.

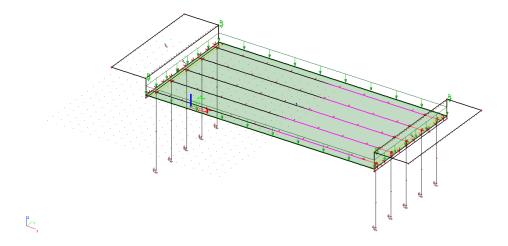


Figura B. 47: Carga de Pavimentação e Recapeamento

2.3.1.4. Fluência e Retração do Concreto

De acordo com a NBR 6118/2014 o valor da retração do concreto depende de 3 fatores, sendo eles:

- Umidade relativa do ambiente;
- Consistência do concreto no lançamento
- Espessura fictícia da peça

Tabela 8.2 – Valores característicos superiores da deformação específica de retração ε _{cs} (t _∞ ,t ₀) e do coeficiente de fluência φ (t _∞ ,t ₀)										
Umidade média ambiente %		40		55		75		90		
Espessura 2A _c cm	/u	a	20	60	20	60	20	60	20	60
φ (t _∞ ,t ₀)	φ (t _∞ ,t ₀)	5	4,6	3,8	3,9	3,3	2,8	2,4	2,0	1,9
Concreto das classes	30	3,4	3,0	2,9	2,6	2,2	2,0	1,6	1,5	
C20 a C45		60	2,9	2,7	2,5	2,3	1,9	1,8	1,4	1,4
$\varphi(t_{\infty},t_0)$		5	2,7	2,4	2,4	2,1	1,9	1,8	1,6	1,5
Concreto das classes	t ₀	30	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1
C50 a C90	ulas	60	1,7	1,6	1,5	1,4	1,2	1,2	1,0	1,0
$\varepsilon_{\text{CS}}(t_{\circ},t_0)$ ‰		5	- 0,53	- 0,47	- 0,48	- 0,43	- 0,36	- 0,32	- 0,18	- 0,15
		30	- 0,44	- 0,45	- 0,41	- 0,41	- 0,33	- 0,31	- 0,17	- 0,15
		60	- 0,39	- 0,43	- 0,36	- 0,40	- 0,30	- 0,31	- 0,17	- 0,15

RETRAÇÃO: REDUÇÃO DO VOLUME DE CONCRETO POR PERDA DE AGUA

Dados:

Umidade ambiente (%): 75 Área da seção de concreto (cm²): 31750 Perimetro da seção do concreto (cm): 2590 Tempo inicial (to): 5 0,00001 Coeficiente de dilatação termica (m/°C):

Espessura equivalente (cm): 24,52 Deformação esp. De retração (%o): -0,00035548

Gradiente de temperatura equivalente: -35,55

20	-0,36		
24,52	-0,36		
60	-0,32		

FLUENCIA: AUMENTO DA DEFORMAÇÃO DEVIDO À UM CARREGAMENTO CONSTANTE

°C

°C

Dados:

Fck do concreto (Mpa): 35 17,50 Tensão aplicada ao concreto (Mpa): Umidade ambiente (%): 75,00 Tempo inicial (to): 5,00

Eci: 33130,05 Deformação esp. Por fluencia (%o): 0,0001455 Coeficiente de dilatação termica (m/°C):

Gradiente de temperatura equivalente: 14,55

20 2,80 24,52 2,75 60 2,40

Material Basalto 1,2 Granito 1 Calcario 0,9 Arenito 0,7

-21,00 Retração + Fluencia:

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.

0,00001

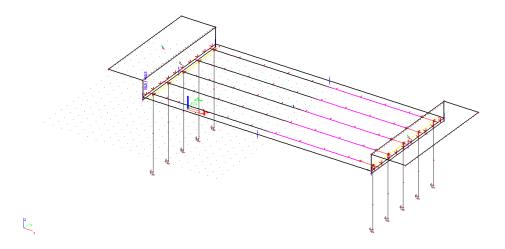


Figura B. 48: Carga de Retração

2.3.1.5. Carga de Protensão

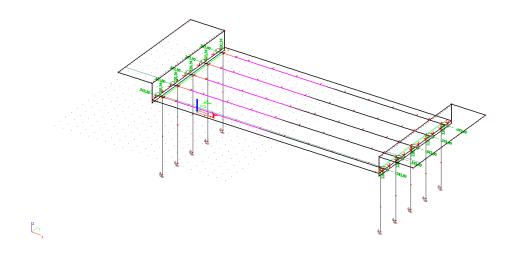


Figura B. 49: Carga de Protensão

2.3.2. Carregamentos Variáveis

2.3.2.1. Variação de Temperatura

A variação de temperatura da estrutura, causada globalmente pela variação da temperatura da atmosfera e pela isolação direta, é considerada uniforme. Ela depende do local de implantação da construção e das dimensões dos elementos estruturais que compõem.

De acordo com a NBR6118/2014 podem ser adotados os seguintes valores:

- Para elementos estruturais cuja menor dimensão a ser adotada não seja superior a 50cm, deve ser considerada uma oscilação de temperatura em torno da média de 10°C a 15°C;
- Para elementos estruturais maciços ou ocos, com espaços vazios inteiramente fechados, cuja menor dimensão seja superior a 70 cm, admite-se que essa oscilação seja reduzida respectivamente entre 5°C a 10°C;
- Para elementos estruturais cuja a menor dimensão esteja entre 50 cm e 70 cm, admite-se que seja feita uma interpolação linear entre os valores acima adotados.

A escolha entre esses dois limites pode ser feita considerando-se 50% da diferença entre as temperaturas médias de verão e inverno no local da obra.

Região	Temperatura média no inverno	Temperatura média no verão	Diferença ∆T	Diferença ΔT x 0,5
Norte	24°C	26°C	2°C	1°C
Nordeste	20°C	28°C	8°C	4°C
Sudeste	13°C	24°C	11°C	5,5°C
Sul	9°	24°C	15°C	7,5°C
Centro-Oeste	13°C	26°C	13°C	6,5°C

Para a presente obra será adotado o valor de 15°C para a coeficiente de variação de temperatura.

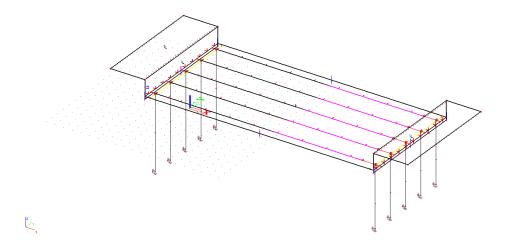


Figura B. 50: Carga de Variação de Temperatura

2.3.2.2. Vento

Velocidade básica Vo:	45	m/s
Fator topografico S1:	1	
Rugosidade do terreno - Fator S2:	1,04	
Fator estatistico S3:	1,1	
Altura viga:	1,6	m
Altura laje:	0,25	m
		_
Velocidade Caracteristica do vento:	51,48	m/s
Pressão dinamica do vento:	1624,567	7 N/m ² — 0,162 tf/m ²
Coeficiente de arrasto:	1	
Altura ponte descarregada (viga + laje):	1,85	m
Altura ponte carregada (viga + laje + 2m):	3,85	m
Vento Ponte descarregada:	0,30	tf/m
Vento Ponte carregada:	0,63	tf/m
Velocidade Caracteristica do vento: Pressão dinamica do vento: Coeficiente de arrasto: Altura ponte descarregada (viga + laje): Altura ponte carregada (viga + laje + 2m): Vento Ponte descarregada:	51,48 1624,567 1 1,85 3,85 0,30	m/s 7 N/m²

VENTO PONTE DESCARREGADA

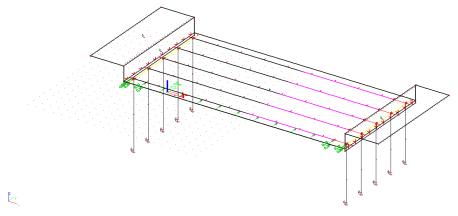


Figura B. 51: Carga de Vento para Ponte descarregada

VENTO PONTE CARREGADA

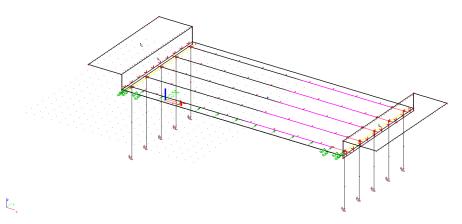


Figura B. 52: Carga de Vento para Ponte carregada

2.3.2.3. Carga Móvel: TREM TIPO, FRENAGEM E CARGA DE MULTIDÃO

Segundo a NBR 7188/2014 a carga móvel rodoviária é composta de um veículo tipo e de cargas uniformemente distribuídas, de acordo com a tabela:

Cargas dos Veículos								
	V	eículo		Cargas Uniformemente Distribuídas				
Classe da Ponte	Tipo	Peso Total		p		<i>p'</i>		Disposição da
	_	kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²	carga
45	45	450	45	5	500	3	300	Carga p em toda a
30	30	300	30	5	500	3	300	pista Carga p' nos
12	12	120	12	4	400	3	300	passeios

Segundo a norma foi adotada, para fins de cálculo, a carga móvel rodoviário padrão TB-450, na qual a base do sistema é um veículo-tipo de 450 kN de peso total circundado por uma carga uniformemente distribuída constante de 5KN/m² (carga de multidão).

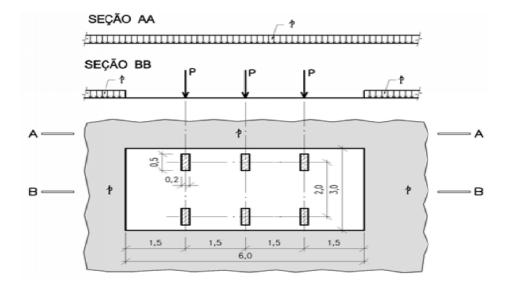


Figura B. 53: Trem tipo

Veículo tipo

O veículo tipo possui 6 rodas com cargas verticais estáticas P = 75KN cada. Possui 3 eixos de carga afastados entre si 1,5m e de largura 2m. As cargas que constituem o trem-tipo, mantém entre si distâncias constantes, mas a sua posição com a linha de influência é variável e deve ser tal, que produza na seção considerada do elemento em estudo um máximo ou mínimo da solicitação. Diz ainda a NBR 7188/2014 que para obter efeitos mais desfavoráveis deve haver

uma distância de 25 cm entre a roda do veículo e o guarda-rodas. Alem das cargas estáticas o veiculo tipo será inserido no modelo já amplificado por coeficientes de majoração conforme visto adiante.

Carga de multidão

A carga de multidão "p" é aplicada sob todo o tabuleiro da estrutura. É uma carga fictícia, e procura levar em consideração a ocupação máxima de pessoas na estrutura. Segundo a NBR 7188/2014 deve-se considerar 500 kg/m² (0,5 ton. /m²) para a carga nas faixas de rodagem. Além desse valor estático a carga de multidão será inserida no modelo já amplificada por coeficientes de majoração conforme visto adiante. Para a fase de construção foi adotada uma carga de multidão no valor de 100kg/m².

Coeficientes de majoração das cargas móveis:

Conforme a norma NBR 7188/2014, além do efeito estático das cargas móveis, são aplicados coeficientes de impacto sob os valores de carregamento gerado tanto pelo veículo tipo como pela carga de multidão.

Conforme a norma a definição dos coeficientes de majoração das cargas móveis é apresentada da seguinte forma:

Veículo tipo: $Q = P \times CIV \times CNF \times CIA$, sendo:

Q = carga concentrada majorada

P = carga vertical estática = 75KN

Carga de multidão: $q = p \times CIV \times CNF \times CIA$, sendo:

q = carga de multidão majorada

 $p = carga de multidão estática = 5KN/m^2$

A seguir são definidos os coeficientes de majoração:

CIV – Coeficiente de Impacto Vertical: amplifica a ação da carga estática simulando o efeito dinâmico da carga em movimento e a suspensão dos veículos automotores.

$$CIV = 1+1.06 \times (20/L +50)$$

Sendo L o vão de 26,5 m, temos:

$$CIV = 1,277$$

CNF: Coeficiente do Número de Faixas: corrige distorções estatísticas

$$CNF=1-0.05*(n-2)>0.9$$

n: número (inteiro) de faixas de tráfego rodoviário a serem carregadas sobre um tabuleiro transversalmente contínuo. Acostamentos e faixas de segurança não são faixas de tráfego da rodovia.

$$CNF = 1-0.05x (2-2) = 1.0$$

CIA: Coeficiente de Impacto Adicional: consiste em coeficiente destinado à majoração da carga móvel característica devido à imperfeição e/ou descontinuidade da pista de rolamento, no caso juntas de dilatação e nas extremidades das obras, estruturas de transição e acessos. Os esforços das cargas móveis verticais devem ser majorados na região das juntas estruturais e extremidades da obra. Todas as seções dos elementos estruturais a uma distância horizontal, normal à junta, inferior a 5,0m para cada lado da junta ou descontinuidade estrutural, devem ser dimensionadas com os esforços das cargas móveis majorados pelo Coeficiente de Impacto Adicional, abaixo definido.

CIA = 1,25 para obras em concreto ou mistas

CIA = 1,15 para obras em aço

De tal forma a carga móvel é majorada e inserida no modelo de cálculo como segue:

Carga de multidão:

Para a região das juntas estruturais e extremidade da obra

$$q = p \times CIV \times CNF \times CIA = 5KN/m^2 \times 1,277 \times 1,0 \times 1,25 = 7,981N/m^2$$

Para o trecho corrente

$$q = p \times CIV \times CNF = 5KN/m^2 \times 1,277 \times 1,0 = 6,38KN/m^2$$

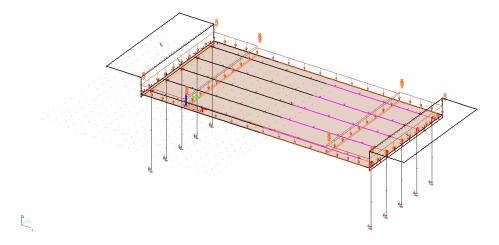


Figura B. 54: Cargas de multidão

Veículo tipo:

Para a região das juntas estruturais e extremidade da obra

$$Q = P \times CIV \times CNF \times CIA = 75KN \times 1,277 \times 1,0 \times 1,25 = 119,72KN$$

Para o trecho corrente

$$Q = P \times CIV \times CNF = 75KN \times 1,277 \times 1,0 = 95,78KN$$

Dado que a carga de multidão majorada foi aplicada no modelo computacional em toda a área do tabuleiro podemos reduzir o valor dos veículos tipo na área do trem-tipo (18m²).

Para a região das juntas estruturais e extremidade da obra

$$Q = 119,72 - (7,981 \times 18/6) = 95,78KN$$

Para o trecho corrente

$$Q = 95,78 - (6,38 \times 18/6) = 76,64KN$$

As posições do veículo tipo são variáveis ao longo da linha de influência (pista de tráfego), exercendo, ao todo, 30 posições distintas por pista de tráfego com espaçamento entre veículos tipo constante. Segue, abaixo, o modelo de cálculo com a representação do veículo tipo.

Z_Y

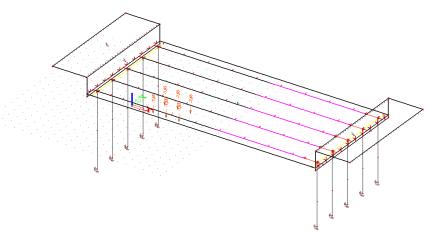


Figura B. 55: Carga de veículo tipo para trecho corrente

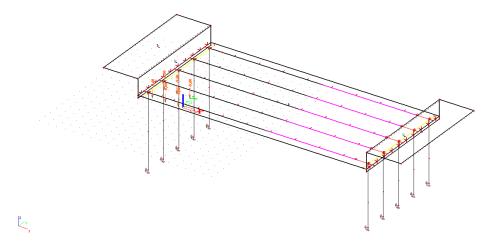


Figura B. 56: Carga de veículo tipo para a região das juntas estruturais e extremidade da obra

As cargas horizontais devido à frenagem e/ou aceleração, aplicados no nível do pavimento, são um percentual da carga vertical característica dos veículos aplicados sobre o tabuleiro, na posição mais desfavorável e concomitante com a respectiva carga vertical.

Hf=0,25*B*L*CNF, em [kN] onde:

 $Hf \ge 135kN$

B: largura efetiva [m] da carga distribuída de 5kN/m2.

L: comprimento concomitante [m] da carga distribuída.

 $Hf = 0.25 \times 12.70 \times 26.5 \times 1 = 84.14 \text{ KN}$

Logo, o maior carregamento equivale a 0,040 tf/m². Segue, abaixo, o modelo de cálculo com a representação.

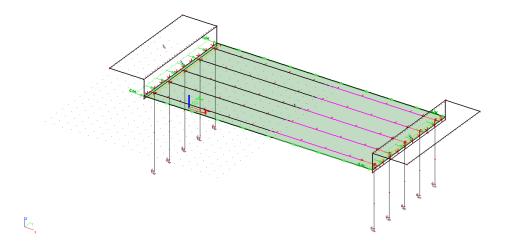


Figura B. 57: Carga de Frenagem ou Aceleração

2.3.2.4. Carga de Colisão em Pilares

Todos os pilares próximos a rodovias devem ser protegidos por dispositivos de contenção apropriados, dimensionados de acordo com 5.2.3.4 da NBR 7188/2014.

Como medida mitigadora de eventuais impactos, os pilares situados junto a faixas rodoviárias devem ser verificados para uma carga horizontal de colisão de 10t na direção do tráfego e 5t perpendicular ao tráfego, não concomitantes entre si, aplicadas a uma altura de 1,25m do terreno ou pavimento. Estes valores decrescem linearmente com a distância do pilar à pista, sendo zero a 10,0m.

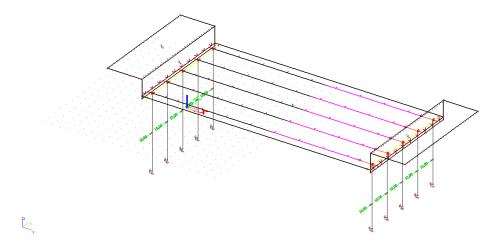


Figura B. 58: Carga de colisão na direção do tráfego

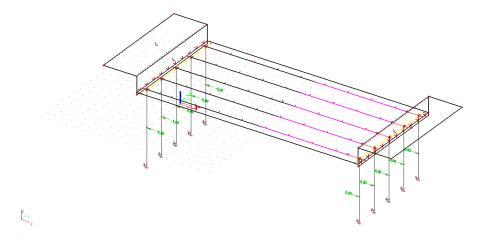


Figura B. 59: Carga de colisão perpendicular ao tráfego

2.3.3. Grupo de Carga

CP: Carga permanente: - Peso próprio

- Peso próprio da estrutura
- Peso próprio do guarda rodas
- Pavimentação e recapeamento
- Fluência e retração
- Protensão (90% + perdas)

CM: Cargas Móveis: - Cargas horizontais em "X"

• Trem tipo TT45 + Carga de multidão

CV: Cargas de Vento: - Cargas horizontais em "Y"

- Vento com Ponte Descarregada
- Vento com Ponte Carregada

CT: Cargas Térmicas:

• Variação de temperatura

FR: Cargas variável: - Cargas horizontais em "X"

• Frenagem e aceleração

2.3.4. Combinações

Estados limites: Os estados limites podem ser estados limites últimos ou de serviço. Os estados limites considerados nos projetos de estruturas dependem dos tipos de materiais de construção empregados e devem ser especificados pelas normas referentes ao projeto de estruturas com eles constituídas.

Estados limites últimos:

- No projeto usualmente devem ser considerados os estados limites últimos caracterizados por:
- Perda de equilíbrio, global ou parcial, admitida a estrutura como um corpo rígido;
- Ruptura ou deformação plástica excessiva dos materiais;
- Transformação da estrutura, no todo ou em parte, em sistema hipostático;
- Instabilidade por deformação;
- Instabilidade dinâmica.

Os estados limites últimos decorrem de ações cujas combinações podem ter três diferentes ordens de grandeza:

• Combinações última normal:

$$F_d = \sum_{t=1}^m \gamma_{gt} F_{GLK} + \gamma_Q \left[F_{QLK} + \sum_{j=2}^n \psi_{0j} F_{QJK} + \right]$$

	СР	CM	CV	CT	FR	CARGA COLISÃO
CUN vento - sem frenagem	1,35	1,05	1,4	0,72		1.05
CUN vento - com frenagem	1,35	1,05	1,4	0,72	1,05	1.05
CUN temperatura - sem frenagem	1,35	1,05	0,84	1,2		1.05
CUN temperatura - com frenagem	1,35	1,05	0,84	1,2	1,05	1.05
CUN carga móvel - sem frenagem	1,35	1,5	0,84	0,72		1.5
CUN carga móvel - com frenagem	1,35	1,5	0,84	0,72	1,5	1.5

Estados limites de serviço:

No período de vida da estrutura, usualmente são considerados estados limites de serviço caracterizados por:

- Danos ligeiros ou localizados, que comprometam o aspecto estético da construção ou a durabilidade da estrutura;
- Deformações excessivas que afetem a utilização normal da construção ou seu aspecto estético;
- Vibração excessiva ou desconfortável.

Os estados limites de serviço decorrem de ações cujas combinações podem ter quatro diferentes ordens de grandeza de permanência na estrutura:

• Combinações carga permanente: Combinações que atuam durante todo o do período de vida da estrutura;

$$F_{d,utt} = \sum_{t=1}^{m} F_{Gt,K}$$

	CP	CM	CV	CT	FR
CCP	1				

• Combinações quase permanente: Combinações que podem atuar durante grande parte do período de vida da estrutura, da ordem da metade deste período;

$$F_{d,uti} = \sum_{i=1}^{m} F_{GI,K} + \sum_{j=1}^{n} \psi_{2j} F_{QJ,K}$$

	CP	CM	CV	CT	FR
QQP sem frenagem	1	1		0,3	
QQP com frenagem	1	1		0,3	0,2

• Combinações frequentes: Combinações que se repetem muitas vezes durante o período de vida da estrutura, da ordem de 105 vezes em 50 anos, ou que tenham duração total igual a uma parte não desprezível desse período, da ordem de 5%;

$$F_{d,utl} = \sum_{i=1}^{m} F_{GI,K} + \psi_{1j} F_{QI,K} + \sum_{j=2}^{n} \psi_{2j} F_{QJ,K}$$

LAJE DO TABULEIRO	CP	CM	CV	CT	FR
CFS vento - sem frenagem	1	0,3	0,5		
CFS vento - com frenagem	1	0,3	0,5		0,3
CFS temperatura - sem	1	0,3		0,5	
frenagem					
CFS temperatura - com	1	0,3		0,5	0,3
frenagem					
CFS carga móvel - sem	1	0,5		0,3	
frenagem					
CFS carga móvel - com	1	0,5		0,3	0,5
frenagem					

VIGA LONGARINA	CP	CM	CV	CT	FR
CFS vento - sem frenagem	1	0,3	0,8		
CFS vento - com frenagem	1	0,3	0,8		0,3
CFS temperatura - sem	1	0,3		0,8	
frenagem					
CFS temperatura - com	1	0,3		0,8	0,3
frenagem					
CFS carga móvel - sem	1	0,8		0,3	
frenagem					
CFS carga móvel - com	1	0,8		0,3	0,8
frenagem					

• Combinações raras: Combinações que podem atuar no máximo algumas horas durante o período de vida da estrutura.

$$F_{d,utt} = \sum_{t=1}^{m} F_{GI,K} + F_{Q1,K} + \sum_{f=2}^{n} \psi_{1f} F_{QJ,K}$$

	CP	CM	CV	CT	FR
CRS móvel + vento - sem	1	1	0,8		
frenagem					
CRS móvel + vento - com	1	1	0,8		1
frenagem					
CRS móvel + temp sem	1	1		0,8	
frenagem					
CRS móvel + temp com	1	1		0,8	1
frenagem					

No período de vida da estrutura devem ser considerados também os seguintes estados limites:

 Estados limites de perda de equilíbrio das fundações: Para o dimensionamento da capacidade estrutural da fundação deverão ser utilizados os valores apresentados no estado limite último.

Como o dimensionamento geotécnico das fundações é feito por tensões admissíveis (no caso de sapatas) e por cargas admissíveis (estacas ou tubulões), e estas tensões ou cargas admissíveis incluem coeficientes de segurança que minoram as resistências dos elementos de fundação (NBR 6122 – tabela 01)

- Capacidade de carga de fundação superficial: Fator = 3
- Capacidade de carga de fundação profunda sem prova de carga: Fator = 2
- Capacidade de carga de fundação profunda com prova de carga: Fator = 1,6

Se as reações de apoio a serem suportadas por elementos de fundação, definidas pelo estado limite último, forem usadas diretamente nos projetos de fundação baseado no critério de tensões ou cargas admissíveis, haverá um confronto de critério de segurança.

- O critério do estado limite último usa coeficientes de segurança diferenciados tanto para as solicitações (ações) como para as resistências dos materiais.
- O critério de tensões ou cargas admissíveis usa um único coeficiente de segurança global envolvendo tanto as solicitações (ações) como as resistências dos materiais.

Portanto para que não ocorra confronto entre os critérios de segurança, para o dimensionamento geotécnico deverá ser aplicado o critério das tensões e cargas admissíveis, para o qual implica na necessidade de as solicitações resultantes das combinações de ações atuantes na estrutura serem consideradas sem coeficiente de ponderação (majoração).

$$F_{d,wet} = \sum_{i=1}^{m} F_{Gi,K} + F_{Q1,K} + \sum_{j=2}^{n} \psi_{0j} F_{Qj,K}$$

	CP	CM	CV	CT	FR
CF vento - sem frenagem	1	0,7	1	0,6	
CF vento - com frenagem	1	0,7	1	0,6	0,7
CF temperatura - sem frenagem	1	0,7	0,6	1	
CF temperatura - com frenagem	1	0,7	0,6	1	0,7
CF carga móvel - sem frenagem	1	1	0,6	0,6	
CF carga móvel - com frenagem	1	1	0,6	0,6	1

Combinações frequentes de fadiga: Na falta de um espectro de carga que defina a
frequência de repetição de cada nível de carga, permitindo a aplicação da regra de
Palmgren-Miner, a verificação de fadiga pode ser feita para um único nível de
carga. Esse nível de carga é definido pela carga frequente de fadiga, a qual
corresponde um certo número de ciclos de carga.

Pontes Rodoviárias	$\psi_{1fadiga}$	N
Laje do tabuleiro	0,8	2×10^6
Viga transversina	0,7	2×10^6
Viga longarina	0,5	2×10^6
Meso e infraestrutura	0	2×10^6

$$F_{d,utt} = \sum_{i=1}^{m} F_{GI,E} + \psi_{1fodigo} F_{Q1-E} + \sum_{j=2}^{n} \psi_{2j} F_{Qj,E}$$

LAJE DO TABULEIRO		CM	CV	CT	FR
CFF vento - sem frenagem		0,3	0,8	0,3	
CFF vento - com frenagem	1	0,3	0,8	0,3	0,3
CFF temperatura - sem frenagem	1	0,3		0,8	
CFF temperatura - com frenagem	1	0,3		0,8	0,3
CFF carga móvel - sem frenagem	1	0,8		0,3	
CFF carga móvel - com frenagem	1	0,8		0,3	0,8

VIGA TRANSVERSINA	CP	CM	CV	CT	FR
CFF vento - sem frenagem	1	0,3	0,7	0,3	
CFF vento – com frenagem	1	0,3	0,7	0,3	0,3
CFF temperatura - sem frenagem	1	0,3		0,7	
CFF temperatura - com frenagem	1	0,3		0,7	0,3
CFF carga móvel - sem frenagem	1	0,7			
CFF carga móvel - com frenagem	1	0,7			0,7

VIGA LONGARINA		CM	CV	CT	FR
CFF vento - sem frenagem	1	0,3	0,5	0,3	
CFF vento - com frenagem	1	0,3	0,5	0,3	0,3
CFF temperatura - sem frenagem	1	0,3		0,3	
CFF temperatura - com frenagem	1	0,3		0,3	0,3
CFF carga móvel - sem frenagem	1	0,5		0,3	
CFF carga móvel - com frenagem	1	0,5		0,3	0,5

2.3.5. Envoltórias de Combinações

Para o dimensionamento das peças estruturais serão retirados do programa envoltórias de combinações, sendo elas:

- Envoltória de combinação última;
- Envoltória de combinação quase permanente;
- Envoltória de combinação frequente de serviço;
- Envoltória de combinação rara de serviço;
- Envoltória de combinação fundação dimensionamento geotécnico;

2.3.6. Superestrutura

2.3.6.1. Longarinas (Dimensionamento Armadura Frouxa)

• Combinação carga permanente:

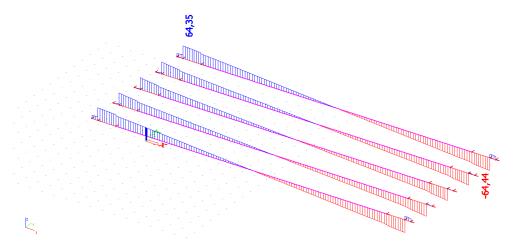


Figura B. 60: CCP - Cortante V3 = 64,44 tf

• Envoltória de combinação frequente de serviço:

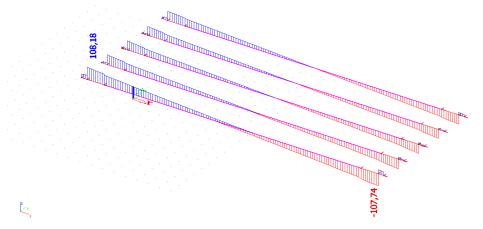


Figura B. 61: CFS - Cortante V3 = 108,18 tf

• Envoltória de combinação frequente de fadiga:

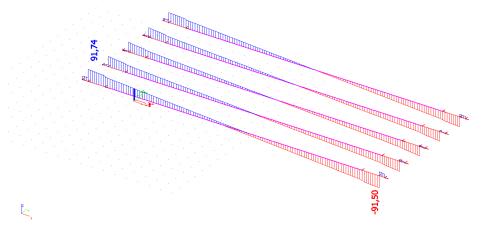


Figura B. 62: CFF - $Cortante\ V3 = 91,74\ tf$

• Envoltória de combinação última:

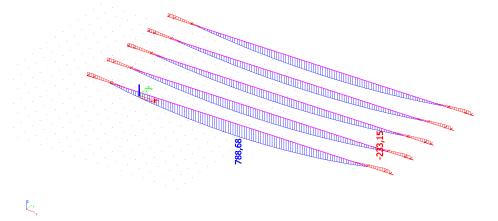


Figura B. 63: CUN - Momento M2 = 788,68 tfm

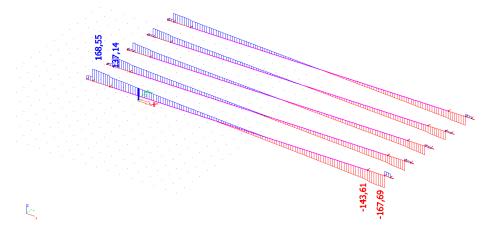


Figura B. 64: CUN – Cortante $V3 = 168,55 \, tf$

Esforço para ELS (Peso próprio+24 cord. Ø15,2mm com perdas imediatas) – dimensionamento da protensão ver item 2.1.7

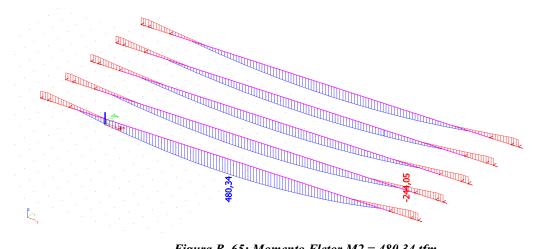


Figura B. 65: Momento Fletor M2 = 480,34 tfm

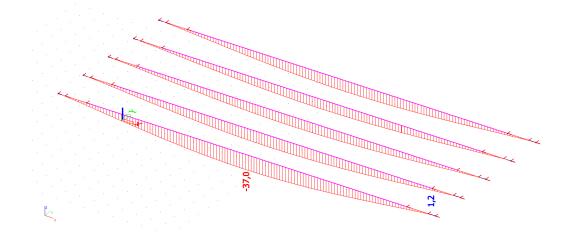


Figura B. 66: Deformação = 3,7cm (valores em mm)

• Içamento (Peso próprio + 24 cord. Ø15,2mm com perdas imediatas):

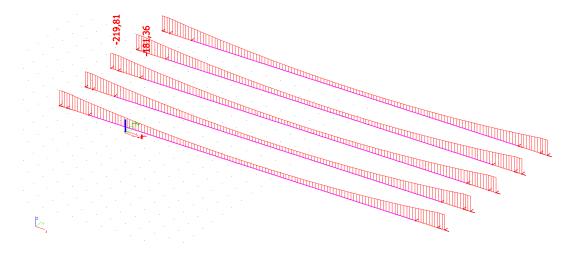


Figura B. 67: Momento Fletor = -219,81tfm

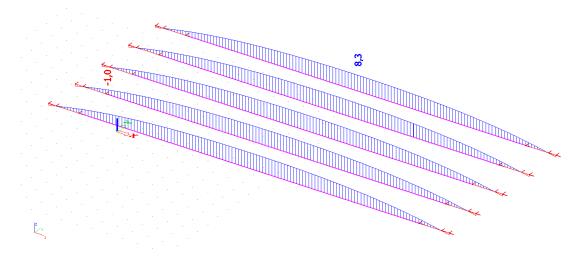


Figura B. 68: Deformação = 0,83cm (valores em mm)

2.3.6.1.1. Dimensionamento

1 - DADOS

Comprimento da viga	26,50 m
Altura da viga	1,60 m
Largura da laje colaborante	2,00 m
Espessura da laje colaborante	0,25 m
Centróide da armadura frouxa	0,13 m
Centróide da protensão	0,12 m

2 - CRITÉRIOS:

As unidades utilizadas nesse memorial, exceto indicação contrária, são as seguintes:

2.1 - Momentos fletores: KN.m

2.2 - Esforços cortantes: KN

2.3 - Armaduras: cm²

3 - MATERIAIS UTILIZADOS

3.1 - Concreto

3.1.1 - Superestrutura

35 Mpa

3.2 - Aço

3.2.1 - Armaduras passivas: Concreto armado 50 A ▼ 3.2.2 - Armaduras de protensão: Concreto protendido 190 ▼

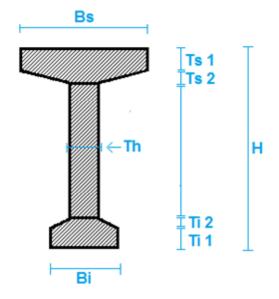
4 - ESFORÇOS STRAP

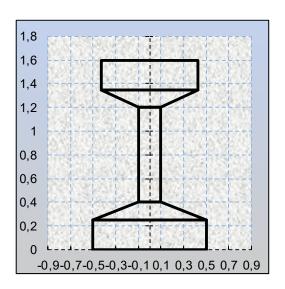
Momentos fletores máximos para:

carregamento do peso proprio da viga (ivipp)	3037,6 KIN.III
* combinação da carga permanente (Mcp)	4333,5 KN.m
* combinação quase-permanente (Mcqp)	5220,9 KN.m
* combinação frequente (Mcf)	5812,5 KN.m
* combinação rara de serviço (Mr)	7291,4 KN.m
* combinação última normal (Mu)	7886,8 KN.m

5 - CARACTERÍSTICAS GEOMÉTRICAS

5.1 - Geometria viga

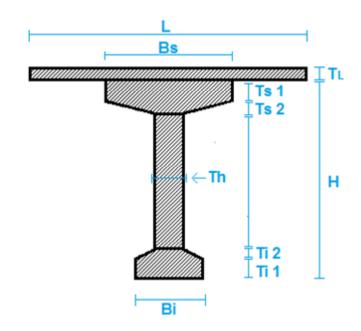

5.1.1 - Entrada de dados


Н	1,60 m
Bs	0,85 m
Bi	1,00 m
Ts1	0,25 m
Ts2	0,15 m
Th	0,20 m
Ti1	0,25 m
Ti2	0,15 m
X *	0,80 m

^{*} Valor de Th nos apoios. Caso a largura da alma seja a mesma em toda a viga, ignorar este campo e deixá-lo em branco.

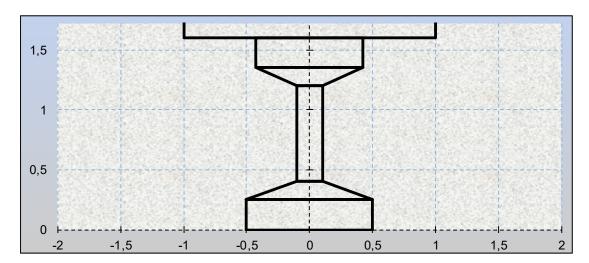
5.1.2 - Resultados

H total=	1,60 m
A=	0,79 m²
J=	0,26 m4
ys=	0,84 m
yi=	0,76 m
Ws=	0,31 m³
Wi=	0,34 m³
perím.=	6,02 m



5.2 - Geometria viga+laje

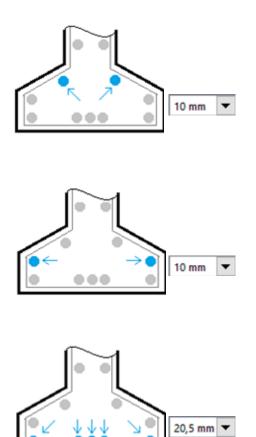
5.2.1 - Entrada

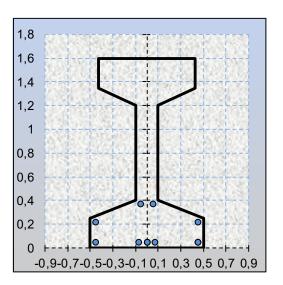

L	2,00 m
TL	0,25 m
Н	1,60 m
Bs	0,85 m
Bi	1,00 m
Ts1	0,25 m
Ts2	0,15 m
Th	0,20 m
Ti1	0,25 m
Ti2	0,15 m

5.2.2 - Resultados

H total=	1,85 m
A=	1,29125 m²
J=	0,54882 m4
ys=	0,71578 m

yi=	1,13422 m
Ws=	0,76675 m³
Wi=	0,48388 m³
Ki=	0,37473 m





8 - Verificação ao ELU

8.1 - Definição das barras de armadura frouxa:

5 barras

8.2 - Verificação ao momento na seção mais solicitada:

armadura ativa SEM laje colaborante

resistência do aço: 190 kN/cm², tensão admissível (σsp): 165,217 kN/cm² Área total das secções transversais das cordoalhas (Ap) = 33,6 cm² Resistência da protensão: Rp = Aprot $x \sigma sp$ = 5551,3 kN

Área de concreto relativa à resistência da protensão: não considerando a laje colaborante resistência nas abas (Rcfd) = 0 kNresistência na alma (Rcwd) = 5551.3 kN momento resist. abas (Mcfd) = momento resist. alma (Mcwd) = 7362.87 kN.m momento resist. alma (Mcwd) = x = 38.4 cm/ 0.8x = 31 cm0,8x < altura da aba ==> seção retangular 0,8x < altura da aba ==> seção retangular $x_{23} = 38.3 \text{ cm}$ / $x_{34} = 45.6 \text{ cm}$ x23 < x < x34 ==> Domínio 3 (armação IDEAL) momento resistente (Mfw) = Mcfd + Mcwd | momento resistente (Mfw) = Mcfd + Mcwd momento resistente = 7362,87 kN.m

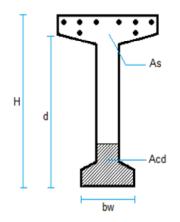
 $Acd1 = 1865,98 \text{ cm}^2$ considerando a laje colaborante resistência nas abas (Rcfd) = 0 kN resistência na alma (Rcwd) = 5551,3 kN 0 kN.m | momento resist. abas (Mcfd) = 0 kN.m 9241.2 kN.m x = 16.3 cm1 0.8x = 13 cm/ x₃₄ = 53,3 cm $x_{23} = 44.8 \text{ cm}$ x < x23 ==> Domínio 2 (seção SUBarmada) momento resistente = 9241.2 kN.m

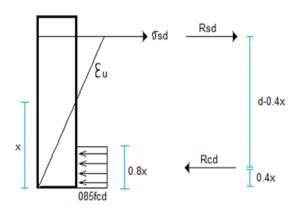
armadura passiva | SEM laje colaborante

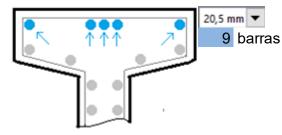
50 kN/cm², tensão admissível (σsb): 43,4783 kN/cm² resistência do aço : Área total das secções transversais das barras (Asd) = 19,6448 cm² Resistência das barras de aço: Rsd = Asd x σsd = 854,121 kN Área de concreto relativa à resistência das barras de aço:

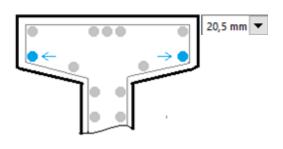
não considerando a laje colaborante resistência nas abas (Rcfd) = 0 kNresistência na alma (Rcwd) = 854,121 kN momento resist. abas (Mcfd) = momento resist. alma (Mcwd) = 1235,36 kN.m momento resist. alma (Mcwd) = x = 5,91 cm0.8x = 4.7 cm/ 0,8x < altura da aba ==> seção retangular 0,8x < altura da aba ==> seção retangular $x_{23} = 38.1 \text{ cm}$ / $x_{34} = 92.4 \text{ cm}$ x < x23 ==> Domínio 2 (seção SUBarmada) momento resistente (Mfw) = Mcfd + Mcwd | momento resistente (Mfw) = Mcfd + Mcwd momento resistente = 1235,36 kN.m

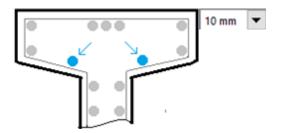
 $Acd2 = 287,099 \text{ cm}^2$ considerando a laje colaborante resistência nas abas (Rcfd) = 0 kN resistência na alma (Rcwd) = 854,121 kN 0 kN.m | momento resist. abas (Mcfd) = 0 kN.m 1460.5 kN.m x = 2,51 cm1 = x8,02 cm $x_{23} = 44.5$ cm / $x_{34} = 108 cm$ x < x23 ==> Domínio 2 (seção SUBarmada) momento resistente = 1460,5 kN.m

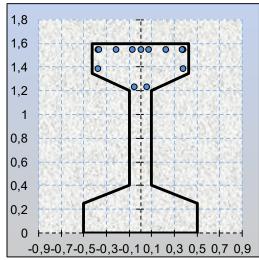

Armadura frouxa com viga em uso (depois da protensão e lançamento, submetida à Combinação Última Normal) momento resultante: 523,935 KN.m / momento resistente: 1235,36 KN.m Armadura adequada: momento resistente maior que momento solicitante






9 - Verificação ao ELS


9.1 - Definição das barras de armadura frouxa



9.2 - Verificação ao momento na seção mais solicitada às fases de 3-7-28 dias

hipóteses de liberação das corodoalhas Cimento Portland © Cimento ARI

idade do	resistência	número de	força de protensão	momento resultante
concreto	resistencia	cordoalhas	aplicada	(calculado)
fck 55%	19,25 Mpa	24	343,81 ton	220 tf.m
fck 75%	26,25 Mpa	24	343,81 ton	220 tf.m
fck 100%	35 Mpa	24	343,81 ton	244 tf.m

Tensão de ruptura do aço: 50 kN/cm^2 , tensão admissível (σ sp): $43,5 \text{ kN/cm}^2$ Área total das secções transversais das barras (Asd) = $37,8778 \text{ cm}^2$ Resistência das barras de aço: Rsd = Asd x σ sd = 1646,86 kN

fase de protensão fck 55%

Área de concreto relativa à resistência das barras de aço : Acd= 1006,48 cm² resistência nas abas (Rcfd) = 0 kN momento resist. abas (Mcfd) = 0 kN.m resistência na alma (Rcwd) = 1646,86 kN momento resist. alma (Mcwd) = 2368,58 kN.m x = 17,6 cm / 0,8x = 14 cm 0,8x < altura da aba ==> seção retangular x23 = 39,1 cm / x34 = 94,8 cm x < x23 ==> Domínio 2 (seção SUBarmada) momento resistente (Mfw) = 241,445 tf.m , momento solicitante (Md) = 220 tf.m

Armadura adequada: momento resistente maior que momento solicitante

fase de protensão fck 75%

Área de concreto relativa à resistência das barras de aço : Acd= 738,089 cm² resistência nas abas (Rcfd) = 0 kN momento resist. abas (Mcfd) = 0 kN.m resistência na alma (Rcwd) = 1646,86 kN momento resist. alma (Mcwd) = 2399,52 kN.m x = 12,9 cm / 0,8x = 10 cm 0,8x < altura da aba ==> seção retangular x_{23} = 39,1 cm / x_{34} = 94,8 cm x < x_{23} ==> Domínio 2 (seção SUBarmada) momento resistente (Mfw) = 244,599 ff.m , momento solicitante (Md) = 220 tf.m

Armadura adequada: momento resistente maior que momento solicitante

fase de protensão fck 100%

Área de concreto relativa à resistência das barras de aço : Acd= 553,567 cm² resistência nas abas (Rcfd) = 0 kN momento resist. abas (Mcfd) = 0 kN.m resistência na alma (Rcwd) = 1646,86 kN momento resist. alma (Mcwd) = 2420,79 kN.m x = 9,69 cm / 0,8x = 7,7 cm 0,8x < altura da aba ==> seção retangular x23 = 39,1 cm / x^{34} = 94,8 cm x < x^{23} ==> Domínio 2 (seção SUBarmada) momento resistente (Mfw) = 246,768 tf.m , momento solicitante (Md) = 244 tf.m

Armadura adequada: momento resistente maior que momento solicitante

12 - Armadura de pele

Nas seções de apoio

Armação necessária em cada face lateral: 0,00136 m², 14 cm²

Diâmetro das barras: 16 mm

Distância máxima entre as barras:

- 20 cm (valor constante)

é o menor valor entre - 50 cm (altura útil / 3)

- 24 cm (15 x diâmetro)

Serão necessárias <u>7 barras</u> com uma distância de <u>12 cm</u> entre si ao longo de cada face lateral das seções de apoio, atendendo 14 cm² de aço dos 14 cm² necessários à cada face, totalizando <u>28 barras</u> de <u>2,00 m</u> e 88,1616 Kg de aço.

Na seção de vão

Armação necessária em cada face lateral: 0,00032 m², 3,2 cm²

Diâmetro das barras: 8 mm

Distância máxima entre as barras:

- 20 cm (valor constante)

é o menor valor entre - 50 cm (altura útil / 3)

- 12 cm (15 x diâmetro)

Serão necessárias <u>7 barras</u> com uma distância de <u>12 cm</u> entre si ao longo de cada face lateral da seção de vão, atendendo 3,5 cm² de aço dos 3,2 cm² necessários à cada face, totalizando <u>14 barras</u> de <u>22,5 m</u> e <u>123,977 Kg</u> de aço.

12 - Verificação ao esforço cortante

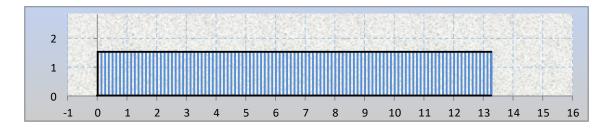
Os quadros abaixo descrevem a disposição dos estribos ao longo da viga. Os primeiros 5 quadros, em ordem, mostram a seqüência de estribos a partir das pontas em direção ao centro. O sexto quadro descreve os estribos no trecho central da peça.

A seqüência completa, de ponta a ponta, será 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1.

comprimento da viga : 26,5 m				
fck do concreto :	35 Mpa			
altura útil :	1,44 m			

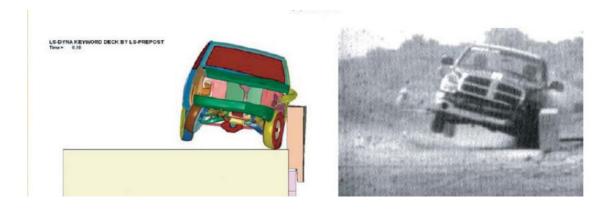
1		_s 200 cm		
cortante de projeto : 1686 largura da alma : 0,85	KN	arm	adura calculada :	8,99 cm²/m
largura da alma : 0,85	m	a	rmadura mínima :	12,5 cm²/m
Vco:1179 kN / Vrd2:/105	kN	armad	dura empregada :	64,3 cm ² /m
estribos no espaçamento : 2	es	spaçamento ((armadura emprega	ida): 12,5 cm
diâmetro do estribo: 16	mm	varia	ção de tensão no	aço: 52 mPa
área de aço no estribo : 8	cm ²	limite pa	ara variação de ter	nsão 85 mPa
16 estribos em	2 m	e espaça	mento de 12,50	cm

2			s 200 cm			
	cortante calculado : 1431		arm	adura calcu	ılada : 20,5	cm²/m
	largura da alma : 0,2	m	а	rmadura mí	nima : 2,95	cm²/m
Vco:	277 kN / Vrd2 : 1672	kN .	armad	lura empreç	gada: 32,2	cm²/m
	os no espaçamento : 1		espaçamento	armadura e	mpregada):	12,5 cm
	diâmetro do estribo: 16	mm	varia	ção de tens	são no aço:	76 mPa
áre	ea de aço no estribo : 4	cm²	limite pa	ara variação	de tensão	85 mPa
	16 estribos em	2 m	e espaça	mento de	12,5 cm	


3		próximo	s^2						
	cortante calculado : 1177	KN		arm	adura c	alcu	lada :	16	cm²/m
	largura da alma : 0,2	m		а	rmadura	a mír	nima :	2,95	cm²/m
Vco:	277 kN / Vrd2 : 1672	kN		armad	dura em	preg	jada :	19,6	cm²/m
	os no espaçamento : 1		espa	çamento	(armadu	ra er	nprega	ida):	12,5 cm
	diâmetro do estribo: 12,5	mm		varia	ção de	tens	ão no	aço:	84 mPa
áre	ea de aço no estribo: 2,5	cm²		limite pa	ara varia	ação	de ter	nsão	85 mPa
	16 estribos em	2 m	е	espaça	mento	de	12,5	cm	

4				200 cm			
	cortante calculado :	922	KN	arm	adura cal	culada : 11,4	cm²/m
	largura da alma :	0,2	m	а	rmadura r	nínima : 2,95	cm²/m
Vco:	277 kN / Vrd2 :	1672	kN	armad	dura empr	egada : 12,6	cm²/m
	os no espaçamento :			spaçamento	(armadura	empregada):	12,5 cm
	diâmetro do estribo :	10	mm	varia	ção de te	nsão no aço:	80 mPa
áre	ea de aço no estribo :	1,6	cm ²	limite pa	ara variaç	ão de tensão	85 mPa
	16 estribos	em	2 m	e espaça	mento de	e 12,5 cm	

5			nos :	530 cm				•
	cortante calculado : 66			arm	nadura ca	alculada :	6,93	cm²/m
	largura da alma : 0	,2 m		a	ırmadura	ı mínima :	2,95	cm²/m
Vco:	277 kN / Vrd2 : 167	72 kN		arma	dura emp	pregada :	8,04	cm²/m
estrib	os no espaçamento : 1		espa	açamento	(armadui	ra emprega	ida):	12,5 cm
	diâmetro do estribo :	8 mm		varia	ação de i	tensão no	aço:	30 mPa
áre	ea de aço no estribo :	1 cm ²		limite pa	ara varia	ıção de ter	nsão	85 mPa
	42 estribos em	, 5,25 m	n e	espaça	mento o	de 12,50	cm	



32 estribos (ø16mm) x 4,98 m/estribo x 1,57 kg/m (densidade linear) = 250,88 kg 64 estribos (ø16mm) x 3,68 m/estribo x 1,57 kg/m (densidade linear) = 370,78 kg 32 estribos (ø12,5mm) x 3,68 m/estribo x 0,96 kg/m (densidade linear) = 113,15 kg 32 estribos (ø10mm) x 3,68 m/estribo x 0,61 kg/m (densidade linear) = 72,42 kg 84 estribos (ø8mm) x 3,68 m/estribo x 0,39 kg/m (densidade linear) = 121,66 kg

total de aço = 928,9 kg

2.3.6.2. Guarda Rodas

O dimensionamento do guarda rodas segue a norma 7188/2013 – impacto em barreiras:

Para a análise matricial foi utilizado um modelo computacional em elementos finitos sólidos, conforme figura abaixo:

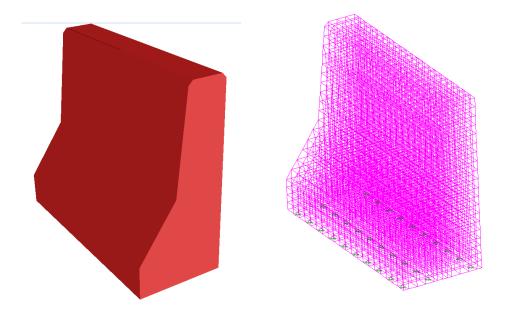
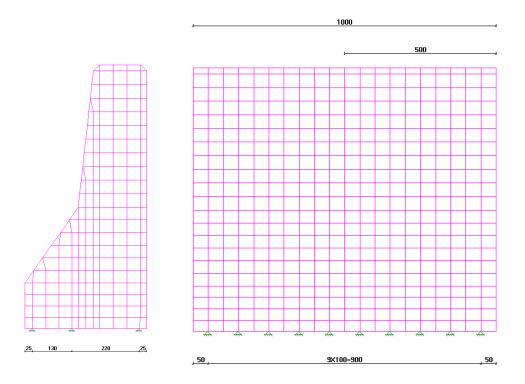



Figura B. 69: Modelos 3D e computacional do Guarda Rodas

O elemento deve ser dimensionado para uma carga horizontal perpendicular à direção do tráfego de 100kN e carga vertical concomitante de 100kN.

A ação é aplicada em um comprimento de 50cm., no topo do elemento, admitindo-se distribuição espacial a 45° .

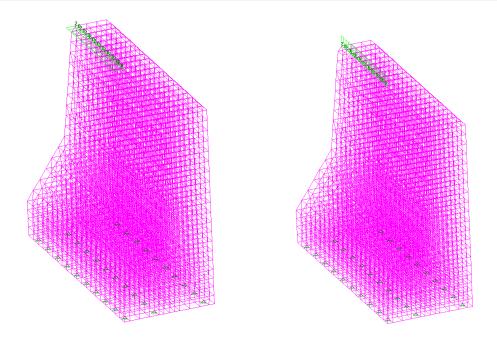


Figura B. 70: Carga aplicadas para dimensionamento do Guarda Rodas

RESULTADOS:

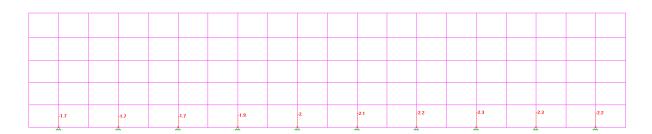


Figura B. 71: reações máximas - posição 1 (-2.2tf)

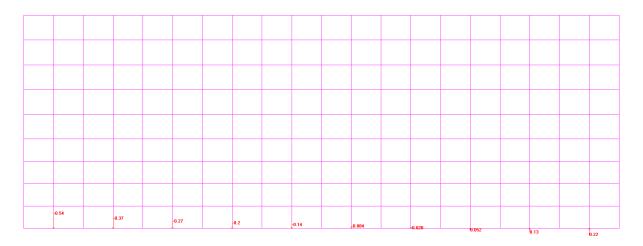


Figura B. 72: reações máximas - posição 2 (-0.54tf)

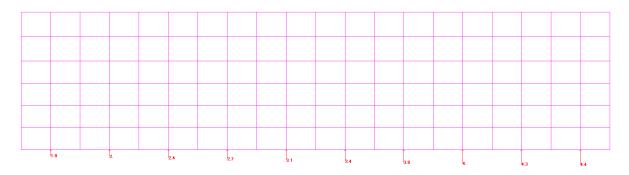


Figura B. 73: reações máximas - posição 3 (4.4tf)

DIMENSIONAMENTO:

Posição 1:	Resultante:	2,2	tf
Diâmetro (mm)	Área	Resultante (tf)	Calculada
6,3	0,311724531	1,36	1,623228041
8	0,502654825	2,19	1,006655015
10	0,785398163	3,41	0,64425921
12,5	1,22718463	5,34	0,412325894
16	2,010619298	8,74	0,251663754
20	3,141592654	13,66	0,161064802
25	4,908738521	21,34	0,103081474
Posição 1:	Resultante:	0,54	tf
Diâmetro (mm)	Área	Resultante (tf)	Calculada
6,3	0,311724531	1,36	0,398428701
8	0,502654825	2,19	0,247088049
10	0,785398163	3,41	0,158136351
12,5	1,22718463	5,34	0,101207265
16	2,010619298	8,74	0,061772012
20	3,141592654	13,66	0,039534088
25	4,908738521	21,34	0,025301816
Posição 1:	Resultante:	-4,4	tf
Diâmetro (mm)	Área	Resultante (tf)	Calculada
6,3	0,311724531	1,36	-3,246456083
8	0,502654825	2,19	-2,01331003
10	0,785398163	3,41	-1,288518419
12,5	1,22718463	5,34	-0,824651788
16	2,010619298	8,74	-0,503327508
20	3,141592654	13,66	-0,322129605
25	4,908738521	21,34	-0,206162947

2.3.7. Encontros

2.3.7.1. Travessas do Encontro

• Envoltória de combinação última:

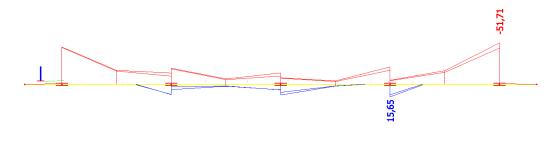


Figura B. 74: CUN - Momento M2 = -51,71tfm/15,65tfm

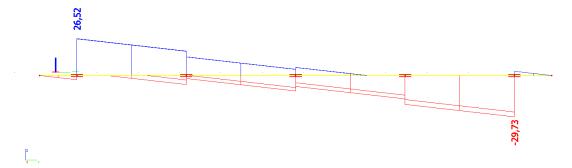
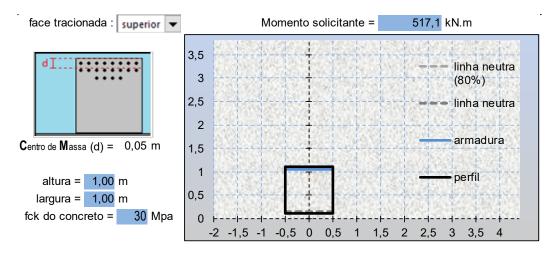


Figura B. 75: CUN – Esforço Cortante V3 = 29,73tf

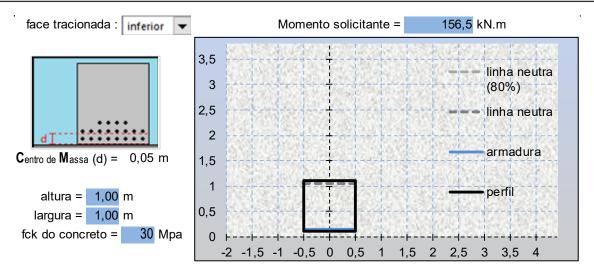


• Armadura mínima de tração para flexão simples:

%:	0,15%	
Altura da viga:	100	cm
Largura da viga:	100	cm
Act:	10000	cm ²

Ø (mm)	As (cm²)	Barras
32	15	2
25	15	4
20	15	5
16	15	8
12,5	15	13
10	15	20
8	15	30

DIMENSIONAMENTO:



t	tipo de aço =			
diâmetro das barras =	20	mm	número de barras =	5
diâmetro das barras =		mm	número de barras =	0
diâmetro das barras =		mm	número de barras =	0
diâmetro das barras =		mm	número de barras =	0

momento solicitante = 51710 kN.cm = 52,7 t.m = 517,1 kN.m 15,71 cm² de aço nas barras = 683 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 4,69 cm resistência da área de concreto comprimida (Rcwd) = 683 kN momento resistente da área de concreto (Mcwd) = 636 kN.m momento último resistente M(u) = Mcwd = 636,00329 kN.m (454,28806 kN.m se dividido por 1,4

t	tipo de aço =			
diâmetro das barras =	20	mm	número de barras =	5
diâmetro das barras =		mm	número de barras =	0
diâmetro das barras =		mm	número de barras =	0
diâmetro das barras =		mm	número de barras =	0

CÁLCULO DA ARMADURA

momento solicitante = 15650 kN.cm = 16 t.m = 156,5 kN.m

15,71 cm² de aço nas barras = 683 kN de resistência (Rsd)
distância entre a linha neutra e a face comprimida (x) = 4,69 cm
resistência da área de concreto comprimida (Rcwd) = 683 kN
momento resistente da área de concreto (Mcwd) = 636 kN.m
momento último resistente M(u) = Mcwd = 636,00329 kN.m (454,28806 kN.m se dividido por 1,4)

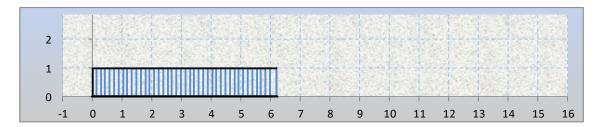
Armação necessária em cada face lateral: 0,001 m², 10 cm²

Diâmetro das barras: 16 mm

Distância máxima entre as barras:

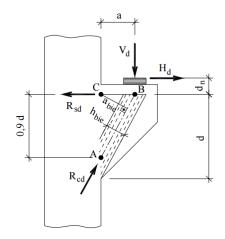
- 20 cm (valor constante)

é o menor valor entre - 30 cm (altura útil / 3)


- 24 cm (15 x diâmetro)

Serão necessárias <u>6 barras</u> com uma distância de <u>20 cm</u> entre si ao longo de cada face lateral das seções de apoio, atendendo 12 cm² de aço dos 10 cm² necessários à cada face, totalizando <u>24 barras</u> de <u>12,40 m</u> e <u>468,516 Kg</u> de aço.

6					seção	do	meio	do	vão				
	cortante calcula	ido :	297	KN									cm²/m
	largura da al						a	arma	adura	a mír	nima :	13,3	cm²/m
Vco:	782 kN / VI	rd2 :	4582	kΝ									cm²/m
estrib	os no espaçame	nto :	2		es	oaça	amento	(arn	nadu	ra ei	mprega	ada):	15 cm
	diâmetro do estr	ibo :	10	mm	1		varia	ação	o de	tens	ão no	aço:	0 mPa
áre	ea de aço no estr	ibo :	3,1	cm	2	I	imite p	ara	varia	ação	de te	nsão	85 mPa
	83 estrib	os	em	12,	5 m	е е	espaça	mei	nto	de	15	cm	
•			(124	5 cm	de	1240	cm)				



0 estribos (ø16mm) x 2,8 m/estribo x 1,57 kg/m (densidade linear) = 0 kg 83 estribos (ø10mm) x 2,6 m/estribo x 0,61 kg/m (densidade linear) = 132,71 kg 83 estribos (ø10mm) x 4,2 m/estribo x 0,61 kg/m (densidade linear) = 214,38 kg total de aço = 347,09 kg

• Verificação do console

$$a_{bie} = \frac{0.9 \text{ d. a}}{\sqrt{(0.9 \text{ d})^2 + a^2}}$$

$$a_{bie} = \frac{0.9 \text{ a}}{\sqrt{(0.9)^2 + (\frac{a}{d})^2}}$$

$$h_{bie} = 0.2 d$$

dados:		_
Vd =	91,26	ton
Hd =	0,35	ton
a =	0,25	m
d =	0,66	m
dn =	0,1	m
b =	0,5	m
fck =	30	Мра

(modelo 2 - combinação CP)

fyd 500 Mpa 50000 ton/m²

calculo das resistencias

resistencia do tirante: Rsd = 38,81801 ton

resistencia da biela de concreto: Rcd = 99,16526 ton

armadura dos tirantes:

calculada: As tir = $0,000776 \text{ m}^2$ $7,763603 \text{ cm}^2$ armadura minima dos tirantes: condição 1: $0,000792 \text{ m}^2$ $7,92 \text{ cm}^2$ condição 2: $0,000495 \text{ m}^2$ $4,95 \text{ cm}^2$ armadura adotada: $7,92 \text{ cm}^2$

armadura adotada: 7,92 cm² diâmetro utilizado: Ø = 20 mm 3,141593 cm²

utilizar: 3 alças

verificação da biela comprimida: $\sigma cd = 1502,504 \text{ ton/m}^2$ 15,02504 Mpa

σcd adm = 21,42857 Mpa OK

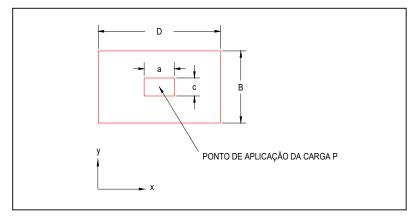
verificação ao cisalhamento: $\tau wd = 276,5455 \text{ ton/m}^2 2,765455 \text{ Mpa}$ $\tau wd \text{ adm} = 3,950116 \text{ Mpa}$ OK

armadura de costura: As cost = $3,769911 \text{ cm}^2$ diâmetro utilizado: \emptyset = 8 mm $0,502655 \text{ cm}^2$

utilizar: 4 estribos horizontais

não será utilizada armadura de suspensão por se tratar de carga direta sobre o console

DADOS: VERIFICAÇÃO DO CONCRETO:


carga de trabalho majorada P = 136,43 tf

lado da placa em x a = 50 cm tensão atuante: 8,92 Mpa lado da placa em y c = 30 cm tensão admissivel 21,43 MPa

lado da base em x D = 100 cm

lado da base em y B = 100 cm resultado: ATENDIDO

fck concreto 30 Mpa fyk aço 5000 kgf/cm²

CÁLCULO DAS ARMADURAS DE TRAÇÃO

Equação de Leonhardt para a resultante de tração:

Zx = 0.3 x P (1-a/D)

 $Zy = 0.3 \times P (1-c/B)$

Zx = 15 ton Zy = 21 ton

Asx = 3,45 cm² armaduras na direção x Asy = 4,83 cm² armaduras na direção y

utilizando aço com \emptyset de: 6,3 mm área de 1 barra: 0,311725 cm²

numero de barras por camada em x: 5 barras por camada numero de barras por camada em y: 5 barras por camada

Asx =	3 camadas
Asy =	4 camadas

	ADOTADO:	4 camadas de	5	Χ	5	
--	----------	--------------	---	---	---	--

2.3.7.2. Cortina do Encontro

• Envoltória de combinação última:

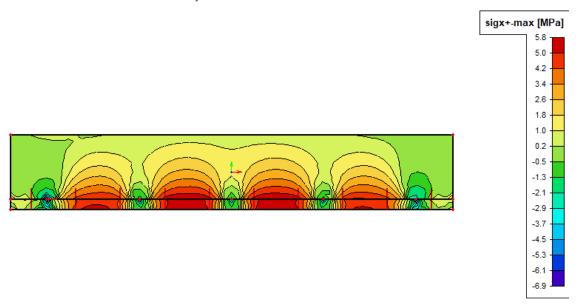


Figura B. 76: CUN – Tensão xz⁺ (Face externa) = 58 kgf/cm²

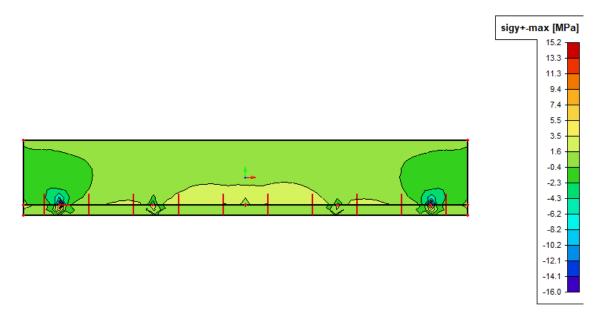


Figura B. 77: CUN – Tensão yz+ (Face externa) = 94 kgf/cm²

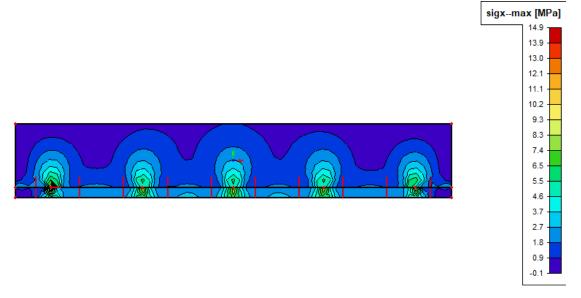


Figura B. 78: CUN – Tensão xz- (Face interna) = 149 kgf/cm²

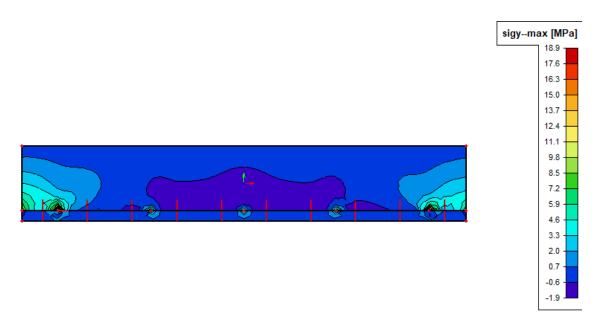
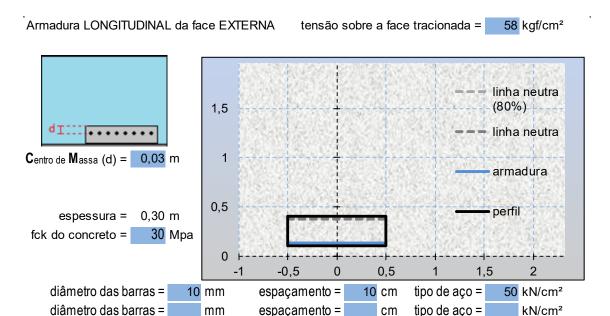
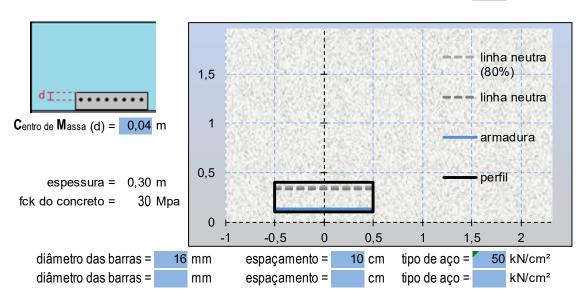



Figura B. 79: CUN – Tensão yz- (Face interna) = 150 kgf/cm²

DIMENSIONAMENTO:

CÁLCULO DA ARMADURA

momento de inércia da seção = 225000 cm⁴
distância do CG até a face comprimida = 15 cm
momento solicitante = 8534,7 kN.cm = 8,7 t.m = 85,347 kN.m

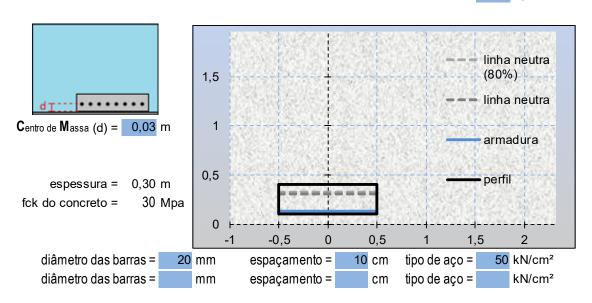

7,854 cm² de aço nas barras = 341,5 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 2,34 cm resistência da área de concreto comprimida (Rcwd) = 341,5 kN momento resistente da área de concreto (Mcwd) = 87,63 kN.m

momento último resistente M(u) = Mcwd = 87,632032 kN.m (62,594309 kN.m se dividido por 1,4)

CÁLCULO DA ARMADURA

momento de inércia da seção = 225000 cm⁴
distância do CG até a face comprimida = 15 cm
momento solicitante = 13832,1 kN.cm = 14,1 t.m = 138,321 kN.m

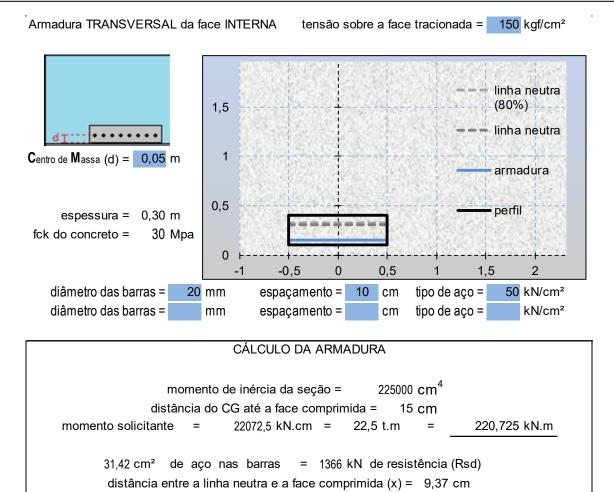
20,11 cm² de aço nas barras = 874,2 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 6 cm resistência da área de concreto comprimida (Rcwd) = 874,2 kN momento resistente da área de concreto (Mcwd) = 209,6 kN.m


momento último resistente M(u) = Mcwd = 209,58769 kN.m (149,70549 kN.m se dividido por 1,4)

tensão sobre a face tracionada = 149 kgf/cm²

CÁLCULO DA ARMADURA

momento de inércia da seção = 225000 cm⁴ distância do CG até a face comprimida = 15 cm


momento solicitante = 21925,35 kN.cm = 22,4 t.m = 219,2535 kN.m

31,42 cm² de aço nas barras = 1366 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 9,37 cm resistência da área de concreto comprimida (Rcwd) = 1366 kN momento resistente da área de concreto (Mcwd) = 312,1 kN.m

momento último resistente M(u) = Mcwd = 312,11646 kN.m (222,94033 kN.m se dividido por 1,4)

resistência da área de concreto comprimida (Rcwd) = 1366 kN momento resistente da área de concreto (Mcwd) = 290,3 kN.m

2.3.7.3. Pilares

Z_Y

• Envoltória de combinação última:

momento último resistente M(u) = Mcwd =

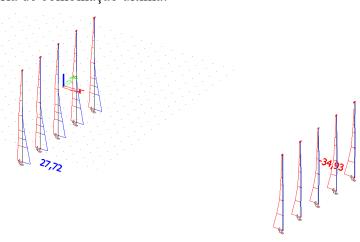


Figura B. 80: CUN - Momento M2 = 34,93 tfm

290,2619 kN.m (207,32993 kN.m se dividido por 1,4)

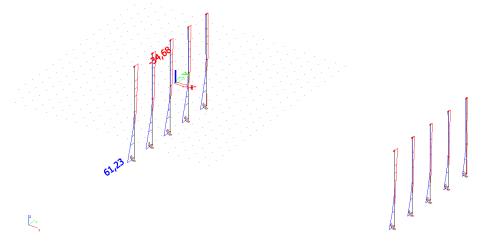
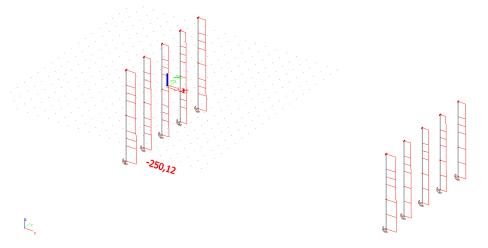
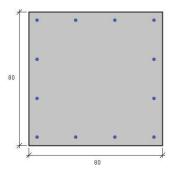


Figura B. 81: CUN - Momento M3 = 61,23 tfm



Figura B. 82: CUN - Esforço Cortante V3 = 9,89 tf




Figura B. 83: CUN - Força Axial = 250,12 tf

DIMENSIONAMENTO:

Seção Transversal:

Armação: 12\phi20 mm (As = 37.70 cm²)

Propriedade seção bruta de concreto:

Årea: $Ac = 6400 \text{ cm}^2$ Centro de gravidade: $x_{eg} = 40 \text{ cm}$ $y_{eg} = 40 \text{ cm}$ Inércia em relação ao cg: $Ix = 3413333 \text{ cm}^4$ $Iy = 3413333 \text{ cm}^4$

Taxa de armadura: $p_s = 0.59 \%$

Materials: Concreto fck = 30 MPa Aço fyk = 500 MPa

PILARES: Dados Armadura

Figura: Sistema de coordenadas para as armaduras

BARRA	\$ (mm)	X (cm)	Y (cm)
1	20.0	5	5
2	20.0	28.3	5
3	20.0	51.7	5
4	20.0	75	5
5	20.0	5	28.3
6	20.0	75	28.3
7	20.0	5	51.7
8	20.0	75	51.7
9	20.0	5	75
10	20.0	28.3	75
11	20.0	51.7	75
12	20.0	75	75

Tabela: Bitolas e coordenadas das armaduras

PILARES: Dados Esforços

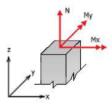


Figura: Convenção de sinais positivos dos esforços, $N \le 0$ para compressão

Combinação	Na	Max	May
1	-250.12	34.93	61.23

Tabela: Combinação de esforços, Unidades [tf, tf.m]

PILARES: Resumo verificação ELU

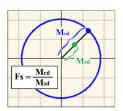


Figura: Esquema para determinação do fator de segurança (F.S.)

Combinação	Nsd	Msdx	Msd,y	F.S.
1	-250.12	34.93	61.23	1.68

Tabela: Resumo verificação ELU, Unidades [tf, tf.m]

PILARES: Resultados da combinação nº 1 (F.S. mínimo)

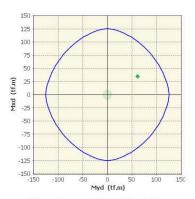


Figura: Diagrama de interação (Comb. 1)

Vsw =

Armadura de cizalhamento:

Combinação ultima normal:	9,89	tf	=	98,9	kN
Combinação frequente de serviço:	0	tf	=	0	kN
Combinação frequente de fadiga:	0	tf	=	0	kN
Combinação carregamento permanente:	0	tf	=	0	kN

$$Vsd = 98,9 \qquad kN$$

$$Vrd 2 = 0,27 \cdot \alpha v2 \cdot fcd \cdot a \cdot (0.9*b) = 1145,571 \qquad kN \qquad OK! - Condição de resistencia av2 = 0,88 \qquad atendida$$

$$fcd = 21,43 \qquad Mpa$$

$$Vc = Vc0 = 0,6 \cdot fctd \cdot a \cdot (0.9*b) = 195,5116 \qquad kN$$

Asw/s =
$$Vsw/0.9*(0.9*b)*fywd*(sen \alpha + cos \alpha) = -5.48$$
 cm²/m

Asw, min =
$$6,66$$
 cm²/m

$$\emptyset$$
 = 8 mm As = 0,50 cm²

Ne = Asw / 2* As 6,62 \rightarrow 7,00 estribos / m

• Armadura adotada = \emptyset 8 c/ 14cm

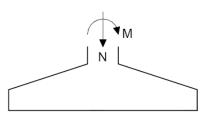
Vsd - Vc = -96,61

2.3.8. Infraestrutura e Fundação

2.3.8.1. Sapata Corrida

Reações Rz:

Reações Rx:


Reações Ry:

sapata isolada com carregamento centrado

36

1 Dados para o projeto estrutural da sapata:

Esforços do ELU (combinação mais crítica)

		_		majoradas
Nsd =	250,12	ton	2501,2 KN	2501,2 KN
Mx =	9,89	ton.m	98,9 KN.m	98,9 KN.m
My =	19,84	ton.m	198,4 KN.m	198,4 KN.m

Armadura longitudinal do pilar:

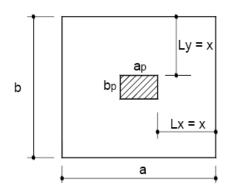
Tensão admissível do solo:

Concreto da sapata:

Aço das armaduras da sapata:

Cobrimento das armaduras da sapata:

	_	
25	mm	
10	kg/cm²	1000 KN/m ²
30	Мра	
5000	kg/cm²	43,47826
4,5	cm	


463

111

60,8

2 Dimensões da sapata em planta

Estimativa da área da sapata: $A = 2,75132 \text{ m}^2$

ap =	50	cm	0,5 m
bp =	50	cm	0,5 m

amin = 1,659 m bmin = 1,659 m

A adot =

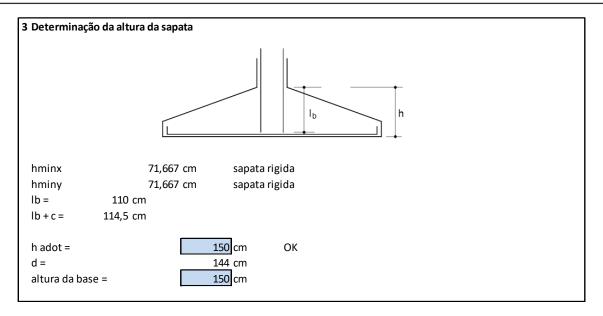
7,0225 m²

2,65 m OK 2,65 m OK

verificação se existem tensões de tração no nucleo central

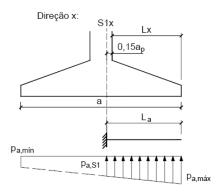
ex = 0,039541 m ex max = 0,441667 m OK ey = 0,079322 m ex max = 0,441667 m OK

módulo de resistencia a flexão


W = 3,101604 m³

tensão máxima de compressão sobre a sapata:

Tmax = $423,6731 \text{ KN/m}^2$ OK



4 Dimensionamento das armaduras

momentos fletores na seção de referencia

La = Tmax =	1,15 m 423,7 KN/m²	Lb = Tmax =	1,15 m 455,8 KN/m²
	, ,		, ,
Tmin =	359,9 KN/m²	Tmin =	327,8 KN/m²
pa max =	1122,73 KN/m	pa max =	1207,75 KN/m
pa min =	953,73 KN/m	pa min =	868,72 KN/m
pa S1a =	1049,39 KN/m	paS1b =	1060,62 KN/m
Msda =	726,2425 KN.m	Msdb =	766,1937 KN.m

determinação da área total das armaduras inferiores

Na direção paralela ao lado "a": Na direção paralela ao lado "b"

Asa = $14,50 \text{ cm}^2$ Asb = $15,30 \text{ cm}^2$ Asa min = $59,625 \text{ cm}^2$ Asb min = $59,63 \text{ cm}^2$

Asa adot = 59,625 cm² Asb adot = 59,63 cm² 16 mm mm utilizando Ø de: utilizando Ø de: As 1Ø: 2,01 cm² As 1Ø: 2,01 cm² 30 barras 30 barras numero de barras: numero de barras:

espaçamento entre as barras espaçamento entre as barras

s max >= 300 cm s max >= 300 cm smax >= 20 cm smax >= 20 cm

s calc = 8,00 cm OK s calc = 8,00 cm OK

5 Verificação das tensões de aderencia

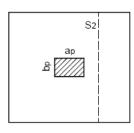
Vsd1 = 1249 KN

tensão de aderencia atuante

 $\tau bd = 0,639 \text{ Mpa}$

resistencia de aderencia de calculo

fbd = 3,259 Mpa OK


6 Dimensionamento ao cisalhamento:

verificação da ruptura por compressão diagonal:

tensão resistente: Trd2 = 0,509 KN/cm²

tensão solicitante: Tsd = 0,096 KN/cm² OK

Armadura transversal (força cortante):

Planta

d/2 = 72 cm Lx = 107,5 cm dmin = 144 cm

ds2 = 150,00 cm

L2 = 35,5 cm


```
Direção paralela a dimensão "a":
           1122,73 KN/m
pa max =
pa min =
            953,73 KN/m
           1100,09 KN/m
pa S2 =
Vsd =
            394,55 KN
          0,362059 Mpa
Trd =
            0,1000
k =
            0,0015
\rho 1 =
            181,34 KN ==> Vsd > Vrd1 ==> armar transversalmente
             cortante de projeto (Vsd): 394,55 kN
         cortante absorvido pelo concreto (Vco):
                                               181,34 kN
     cortante absorvido pela armadura transversal (Vsw): 213,21 kN
 cortante relativo a ruina das diagonais comprimidas (Vrd2): 20238,43 kN
  estribos por espaçamento :
                                           diâmetro dos estribos : 16 mm
                               2
armadura calculada: 3,630736 cm²/m
                                               armadura mínima: 35,2903 cm²/m
armadura empregada: 40,21 cm²/m
                                      espaçamento empregado:
Direção paralela a dimensão "b":
pa max = pa min = 1207,75 KN/m
   Vsd =
            428,75 KN
    \rho 1 =
            0,0015
           181,337 KN ==> Vsd > Vrd1 ==> armar transversalmente
Vrd1 =
             cortante de projeto (Vsd): 428,75 kN
         cortante absorvido pelo concreto (Vco):
                                               181,34 kN
     cortante absorvido pela armadura transversal (Vsw):
                                                         247,41 kN
 cortante relativo a ruina das diagonais comprimidas (Vrd2): 20238,43 kN
  estribos por espaçamento :
                              10
                                           diâmetro dos estribos :
                                                                    16
                                                                        mm
armadura calculada: 4,213076 cm²/m
                                               armadura mínima :
                                                                   35,2903 cm<sup>2</sup>/m
armadura empregada: 61,87 cm²/m
                                         espaçamento empregado:
```


2.4. Modelo 4 – Superestrutura em Malha para o Dimensionamento das Lajes

2.4.1. Carregamentos Permanentes

Nas imagens a seguir as cargas apresentadas estão em toneladas. Após a modelagem da estrutura, foram considerados os seguintes carregamentos.

2.4.1.1. Peso Próprio da Estrutura

O peso próprio é função do peso específico dos materiais em questão, exibidos conforme a tabela a seguir.

Material	V (tf/m ³)	$V(kN/m^3)$
Concreto Armado	2,5	25
Concreto protendido	2,5	25
Concreto Simples	2,2	22
Aço	7,85	78,5

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio.

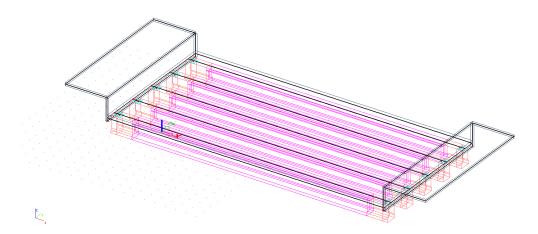


Figura B. 84: Carga de Peso Próprio

2.4.1.2. Peso Próprio Guarda Rodas

O peso próprio é função do peso específico dos materiais e do volume de concreto. Para a determinação do peso por m de guarda rodas devemos calcular a correta área transversal da peça.

Área da seção transversal = 0,31 m²

Peso por m linear = $0.31 \times 2.5 = 0.780 \text{tf/m}$

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio do Guarda Rodas.

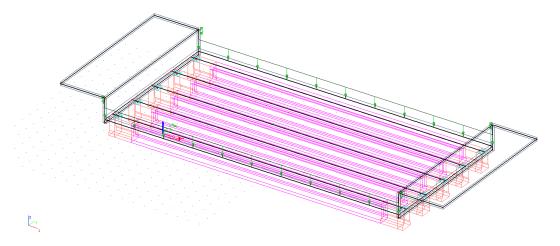


Figura B. 85: Carga de Guarda Rodas

2.4.1.3. Pavimentação e Recapeamento

Segundo a NBR 7187/2003 (Projeto de pontes de concreto armado e protendido – ABNT), deve-se considerar 24 kN/m³ (2400 kg/m³) para o carregamento correspondente a uma camada de 7,0 cm de CBUQ. Sendo assim:

CBUQ = Peso específico do material × Espessura da camada

$$CBUQ = 2400 \ kg \ / \ m^3 \times 0.07 \ m = 168 \ kg \ / \ m^2 = 0.168 \ tf \ / \ m^2$$

Para o cálculo a obra em questão também será considerada uma camada de recapeamento no valor de $0,2 \text{ton/m}^2$.

Segue, abaixo, o modelo de cálculo com a representação do carregamento devido à camada de pavimentação e do recapeamento.

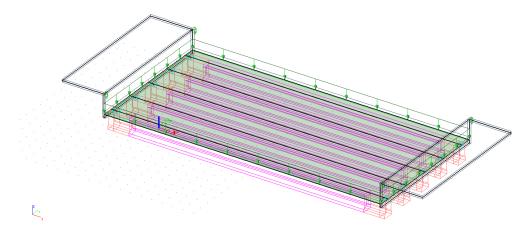


Figura B. 86: Cargas de Pavimento e Recapeamento

2.4.1.4. Fluência e Retração do Concreto

De acordo com a NBR 6118/2014 o valor da retração do concreto depende de 3 fatores, sendo eles:

- Umidade relativa do ambiente;
- Consistência do concreto no lançamento
- Espessura fictícia da peça

Tabela 8.2 – Valores característicos superiores da deformação específica de retração ε _{cs} (t _∞ ,t ₀) e do coeficiente de fluência φ (t _∞ ,t ₀)										
Umidade ambie %	ente	ı	40		55		75		90	
Espessura 2A _c cm	/u	a	20	60	20	60	20	60	20	60
φ (<i>t</i> ∞, <i>t</i> 0)		5	4,6	3,8	3,9	3,3	2,8	2,4	2,0	1,9
Concreto das classes		30	3,4	3,0	2,9	2,6	2,2	2,0	1,6	1,5
C20 a C45		60	2,9	2,7	2,5	2,3	1,9	1,8	1,4	1,4
$\varphi(t_{\infty},t_0)$. /	5	2,7	2,4	2,4	2,1	1,9	1,8	1,6	1,5
Concreto das classes	t ₀ dias	30	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1
C50 a C90		60	1,7	1,6	1,5	1,4	1,2	1,2	1,0	1,0
		5	- 0,53	- 0,47	- 0,48	- 0,43	- 0,36	- 0,32	- 0,18	- 0,15
ε _{cs} (<i>t</i> , <i>t</i> ₀) ‰		30	- 0,44	- 0,45	- 0,41	- 0,41	- 0,33	- 0,31	- 0,17	- 0,15
	10	60	- 0,39	-0,43	- 0,36	- 0,40	- 0,30	- 0,31	- 0,17	- 0,15

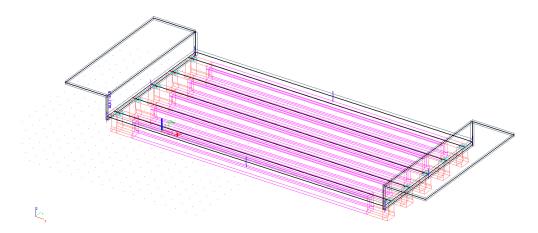


Figura B. 87: Carga de Retração

2.4.2. Carregamentos Variáveis

2.4.2.1. Variação de Temperatura

A variação de temperatura da estrutura, causada globalmente pela variação da temperatura da atmosfera e pela isolação direta, é considerada uniforme. Ela depende do local de implantação da construção e das dimensões dos elementos estruturais que compõem.

De acordo com a NBR6118/2014 podem ser adotados os seguintes valores:

- Para elementos estruturais cuja menor dimensão a ser adotada não seja superior a 50cm, deve ser considerada uma oscilação de temperatura em torno da média de 10°C a 15°C;
- Para elementos estruturais maciços ou ocos, com espaços vazios inteiramente fechados, cuja menor dimensão seja superior a 70 cm, admite-se que essa oscilação seja reduzida respectivamente entre 5°C a 10°C;
- Para elementos estruturais cuja menor dimensão esteja entre 50 cm e 70 cm, admitese que seja feita uma interpolação linear entre os valores acima adotados.

A escolha entre esses dois limites pode ser feita considerando-se 50% da diferença entre as temperaturas médias de verão e inverno no local da obra.

Região	Temperatura média no inverno	Temperatura média no verão	Diferença ∆T	Diferença ΔT x 0,5
Norte	24°C	26°C	2°C	1°C
Nordeste	20°C	28°C	8°C	4°C
Sudeste	13°C	24°C	11°C	5,5°C
Sul	9°	24°C	15°C	7,5°C
Centro-Oeste	13°C	26°C	13°C	6,5°C

Para a presente obra será adotado o valor de 15°C para a coeficiente de variação de temperatura.

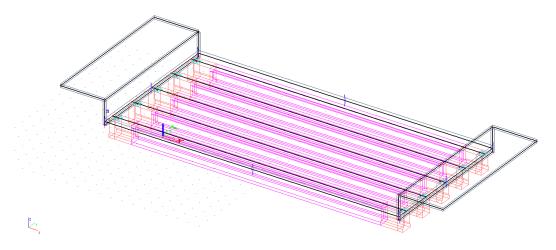


Figura B. 88: Carga de Variação de Temperatura

2.4.2.2. Carga Móvel: TREM TIPO, FRENAGEM E CARGA DE MULTIDÃO

Segundo a NBR 7188/2014 a carga móvel rodoviária é composta de um veículo tipo e de cargas uniformemente distribuídas, de acordo com a tabela:

	Cargas dos Veículos												
	V	eículo		Cargas Uniformemente Distribuídas									
Classe da Ponte	Tipo	Peso Total		p		<i>p'</i>		Disposição da					
	•	kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²	carga					
45	45	450	45	5	500	3	300	Carga p em toda a					
30	30	300	30	5	500	3	300	pista Carga p' nos					
12	12	120	12	4	400	3	300	passeios					

Segundo a norma foi adotada, para fins de cálculo, a carga móvel rodoviário padrão TB-450, na qual a base do sistema é um veículo-tipo de 450 kN de peso total circundado por uma carga uniformemente distribuída constante de 5KN/m² (carga de multidão).

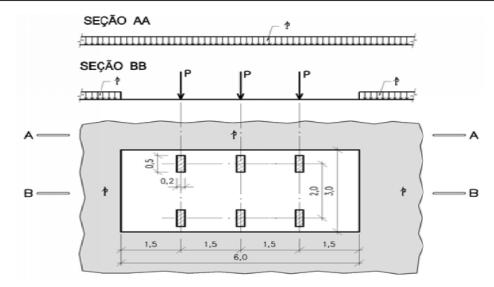


Figura B. 89: Trem tipo

Veículo tipo

O veículo tipo possui 6 rodas com cargas verticais estáticas P = 75KN cada. Possui 3 eixos de carga afastados entre si 1,5m e de largura 2m. As cargas que constituem o trem-tipo, mantém entre si distâncias constantes, mas a sua posição com a linha de influência é variável e deve ser tal, que produza na seção considerada do elemento em estudo um máximo ou mínimo da solicitação. Diz ainda a NBR 7188/2014 que para obter efeitos mais desfavoráveis deve haver uma distância de 25 cm entre a roda do veículo e o guarda-rodas. Alem das cargas estáticas o veiculo tipo será inserido no modelo já amplificado por coeficientes de majoração conforme visto adiante.

Carga de multidão

A carga de multidão "p" é aplicada sob todo o tabuleiro da estrutura. É uma carga fictícia, e procura levar em consideração a ocupação máxima de pessoas na estrutura. Segundo a NBR 7188/2014 deve-se considerar 500 kg/m² (0,5 ton. /m²) para a carga nas faixas de rodagem. Além desse valor estático a carga de multidão será inserida no modelo já amplificada por coeficientes de majoração conforme visto adiante. Para a fase de construção foi adotada uma carga de multidão no valor de 100kg/m².

Coeficientes de majoração das cargas móveis:

Conforme a norma NBR 7188/2014, além do efeito estático das cargas móveis, são aplicados coeficientes de impacto sob os valores de carregamento gerado tanto pelo veículo tipo como pela carga de multidão.

Conforme a norma a definição dos coeficientes de majoração das cargas móveis é apresentada da seguinte forma:

Veículo tipo: $Q = P \times CIV \times CNF \times CIA$, sendo:

Q = carga concentrada majorada

 $P = carga \ vertical \ estática = 75KN$

Carga de multidão: $q = p \times CIV \times CNF \times CIA$, sendo:

q = carga de multidão majorada

p = carga de multidão estática = 5KN/m²

A seguir são definidos os coeficientes de majoração:

CIV – Coeficiente de Impacto Vertical: amplifica a ação da carga estática simulando o efeito dinâmico da carga em movimento e a suspensão dos veículos automotores.

$$CIV = 1+1.06 \times (20/L +50)$$

Sendo L o vão de 26,5 m, temos:

$$CIV = 1.277$$

CNF: Coeficiente do Número de Faixas: corrige distorções estatísticas

$$CNF=1-0.05*(n-2)>0.9$$

n: número (inteiro) de faixas de tráfego rodoviário a serem carregadas sobre um tabuleiro transversalmente contínuo. Acostamentos e faixas de segurança não são faixas de tráfego da rodovia.

$$CNF = 1-0.05x (2-2) = 1.0$$

CIA: Coeficiente de Impacto Adicional: consiste em coeficiente destinado à majoração da carga móvel característica devido à imperfeição e/ou descontinuidade da pista de rolamento, no caso juntas de dilatação e nas extremidades das obras, estruturas de transição e acessos. Os esforços das cargas móveis verticais devem ser majorados na região das juntas estruturais e extremidades da obra. Todas as seções dos elementos estruturais a uma distância horizontal,

normal à junta, inferior a 5,0m para cada lado da junta ou descontinuidade estrutural, devem ser dimensionadas com os esforços das cargas móveis majorados pelo Coeficiente de Impacto Adicional, abaixo definido.

CIA = 1,25 para obras em concreto ou mistas

CIA = 1,15 para obras em aço

De tal forma a carga móvel é majorada e inserida no modelo de cálculo como segue:

Carga de multidão:

Para a região das juntas estruturais e extremidade da obra

$$q = p \times CIV \times CNF \times CIA = 5KN/m^2 \times 1,277 \times 1,0 \times 1,25 = 7,981N/m^2$$

Para o trecho corrente

$$q = p \times CIV \times CNF = 5KN/m^2 \times 1,277 \times 1,0 = 6,38KN/m^2$$

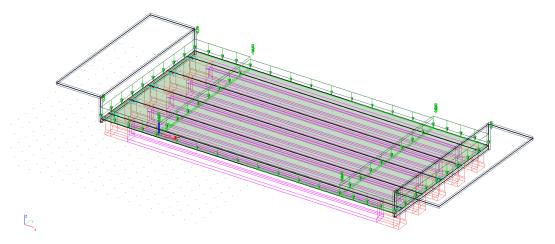


Figura B. 90: Cargas de multidão

Veículo tipo:

Para a região das juntas estruturais e extremidade da obra

$$Q = P \times CIV \times CNF \times CIA = 75KN \times 1,277 \times 1,0 \times 1,25 = 119,72KN$$

Para o trecho corrente

$$Q = P \times CIV \times CNF = 75KN \times 1,277 \times 1,0 = 95,78KN$$

Dado que a carga de multidão majorada foi aplicada no modelo computacional em toda a área do tabuleiro podemos reduzir o valor dos veículos tipo na área do trem-tipo (18m²).

Para a região das juntas estruturais e extremidade da obra

$$Q = 119,72 - (7,981 \times 18/6) = 95,78KN$$

Para o trecho corrente

$$Q = 95,78 - (6,38 \times 18/6) = 76,64KN$$

As posições do veículo tipo são variáveis ao longo da linha de influência (pista de tráfego), exercendo, ao todo, 30 posições distintas por pista de trafego com espaçamento entre veículos tipo constante. Segue, abaixo, o modelo de cálculo com a representação do veículo tipo.

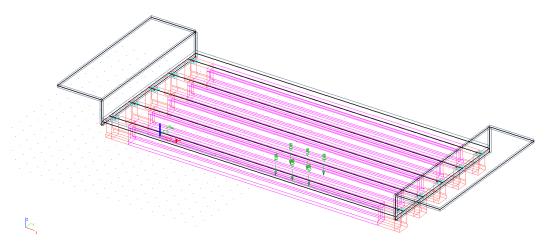


Figura B. 91: Carga de veículo tipo para trecho corrente



Figura B. 92: Carga de veículo tipo para a região das juntas estruturais e extremidade da obra

As cargas horizontais devido à frenagem e/ou aceleração, aplicados no nível do pavimento, são um percentual da carga vertical característica dos veículos aplicados sobre o tabuleiro, na posição mais desfavorável e concomitante com a respectiva carga vertical.

Hf=0,25*B*L*CNF, em [kN] onde:

$$Hf \ge 135kN$$

B: largura efetiva [m] da carga distribuída de 5kN/m2.

L: comprimento concomitante [m] da carga distribuída.

$$Hf = 0.25 \times 12.70 \times 26.5 \times 1 = 84.14 \text{ KN}$$

Logo, o maior carregamento equivale a 0,040 tf/m². Segue, abaixo, o modelo de cálculo com a representação.

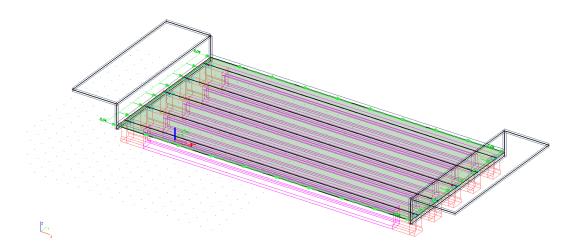


Figura B. 93: Carga de Frenagem ou Aceleração

2.4.3. Grupos de Carga

CP: Carga permanente: - Peso próprio

- Peso próprio da estrutura
- Peso próprio do guarda rodas
- Pavimentação e recapeamento
- Fluência e retração

CM: Cargas Móveis: - Cargas horizontais em "X"

• Trem tipo TT45 + Carga de multidão

CT: Cargas Térmicas:

• Variação de temperatura

FR: Cargas variável: - Cargas horizontais em "X"

• Frenagem e aceleração

2.4.4. Combinações

Estados limites: Os estados limites podem ser estados limites últimos ou de serviço. Os estados limites considerados nos projetos de estruturas dependem dos tipos de materiais de construção empregados e devem ser especificados pelas normas referentes ao projeto de estruturas com eles constituídas.

Estados limites últimos:

No projeto usualmente devem ser considerados os estados limites últimos caracterizados por:

• Perda de equilíbrio, global ou parcial, admitida a estrutura como um corpo rígido;

• Ruptura ou deformação plástica excessiva dos materiais;

• Transformação da estrutura, no todo ou em parte, em sistema hipostático;

Instabilidade por deformação;

Instabilidade dinâmica.

Os estados limites últimos decorrem de ações cujas combinações podem ter três diferentes ordens de grandeza:

• Combinações últimas normais:

$$F_{ii} = \sum_{t=1}^{m} \gamma_{gi} F_{Qi,K} + \gamma_{q} \left[F_{Qi,K} + \sum_{j=2}^{n} \psi_{0j} F_{Qj,K} + \right]$$

	CP	CM	CV	CT	FR
CUN temperatura - sem frenagem	1,35	1,05		1,2	
CUN temperatura - com frenagem	1,35	1,05		1,2	1,05
CUN carga móvel - sem frenagem	1,35	1,5		0,72	
CUN carga móvel - com frenagem	1,35	1,5		0,72	1,5

Estados limites de serviço:

No período de vida da estrutura, usualmente são considerados estados limites de serviço caracterizados por:

- Danos ligeiros ou localizados, que comprometam o aspecto estético da construção ou a durabilidade da estrutura;
- Deformações excessivas que afetem a utilização normal da construção ou seu aspecto estético;
- Vibração excessiva ou desconfortável.

Os estados limites de serviço decorrem de ações cujas combinações podem ter quatro diferentes ordens de grandeza de permanência na estrutura:

• Combinações carga permanente: Combinações que atuam durante todo o do período de vida da estrutura;

$$F_{cl,uti} = \sum_{t=1}^{m} F_{GI,K}$$

	CP	CM	CV	CT	FR
CCP	1				

• **Combinações quase permanentes:** Combinações que podem atuar durante grande parte do período de vida da estrutura, da ordem da metade deste período;

$$F_{d,uti} = \sum_{i=1}^{m} F_{QI,K} + \sum_{j=1}^{n} \psi_{2j} F_{QJ,K}$$

	CP	CM	CV	CT	FR
QQP sem frenagem	1	1		0,3	
QQP com frenagem	1	1		0,3	0,2

• Combinações frequentes: Combinações que se repetem muitas vezes durante o período de vida da estrutura, da ordem de 10⁵ vezes em 50 anos, ou que tenham duração total igual a uma parte não desprezível desse período, da ordem de 5%;

$$F_{d,attl} = \sum_{i=1}^{m} F_{GI,K} + \psi_{1j} F_{QI,K} + \sum_{j=2}^{n} \psi_{2j} F_{QJ,K}$$

LAJE DO TABULEIRO	CP	CM	CV	CT	FR
CFS temperatura - sem frenagem	1	0,3		0,5	
CFS temperatura - com frenagem	1	0,3		0,5	0,3
CFS carga móvel - sem frenagem	1	0,5		0,3	
CFS carga móvel - com frenagem	1	0,5		0,3	0,5

VIGA LONGARINA	CP	CM	CV	CT	FR
CFS temperatura - sem frenagem	1	0,3		0,8	
CFS temperatura - com frenagem	1	0,3		0,8	0,3
CFS carga móvel - sem frenagem	1	0,8		0,3	
CFS carga móvel - com frenagem	1	0,8		0,3	0,8

• Combinações raras: Combinações que podem atuar no máximo algumas horas durante o período de vida da estrutura.

$$F_{d,utt} = \sum_{i=1}^{m} F_{GI,K} + F_{Q1,K} + \sum_{j=2}^{n} \psi_{1j} F_{Qj,K}$$

	CP	CM	CV	CT	FR
CRS móvel + temp sem frenagem	1	1		0,8	
CRS móvel + temp com frenagem	1	1		0,8	1

Combinações frequentes de fadiga: Na falta de um espectro de carga que defina a
frequência de repetição de cada nível de carga, permitindo a aplicação da regra de
Palmgren-Miner, a verificação de fadiga pode ser feita para um único nível de
carga. Esse nível de carga é definido pela carga frequente de fadiga, a qual
corresponde um certo número de ciclos de carga.

Pontes Rodoviárias	$\psi_{1fadiga}$	N
Laje do tabuleiro	0,8	2×10^6
Viga transversina	0,7	2 x 10 ⁶
Viga longarina	0,5	2 x 10 ⁶
Meso e infraestrutura	0	2×10^6

$$F_{d,met} = \sum_{i=1}^{m} F_{GI,K} + \psi_{1fudigu} F_{Q1,K} + \sum_{j=2}^{n} \psi_{2j} F_{Qj,K}$$

LAJE DO TABULEIRO	CP	CM	CV	CT	FR
CFF temperatura - sem frenagem	1	0,3		0,8	
CFF temperatura - com frenagem	1	0,3		0,8	0,3
CFF carga móvel - sem frenagem	1	0,8		0,3	
CFF carga móvel - com frenagem	1	0,8		0,3	0,8

2.4.5. Envoltórias de Combinações

- Para o dimensionamento das peças estruturais serão retirados do programa envoltórias de combinações, sendo elas:
- Envoltória de combinação última;
- Envoltória de combinação quase permanente;
- Envoltória de combinação frequente de serviço;
- Envoltória de combinação rara de serviço;
- Envoltória de combinação fundação dimensionamento geotécnico;

2.4.6. Superestrutura

2.4.6.1. Laje do Tabuleiro

• Combinação Permanente:

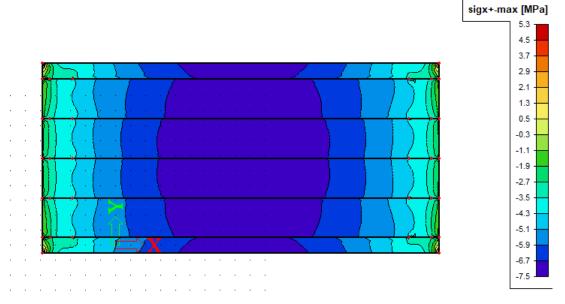


Figura B. 94: CP - $Tensão xz + = 5 kgf/cm^2$

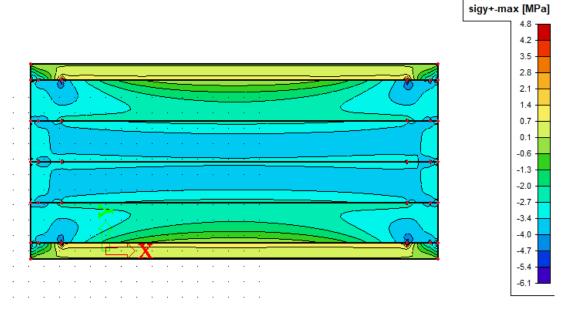


Figura B. 95: CP - $Tensão yz + = 14 kgf/cm^2$

• Envoltória de combinação frequente de serviço:

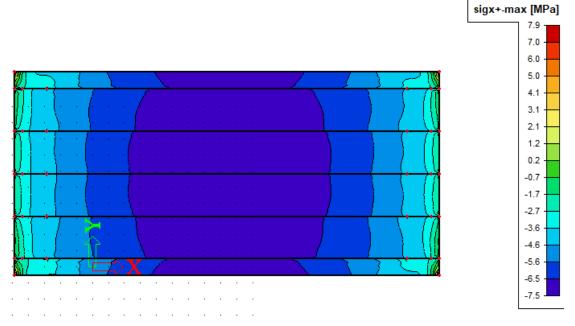


Figura B. 96: CFS - Tensão xz+ = $21kgf/cm^2$

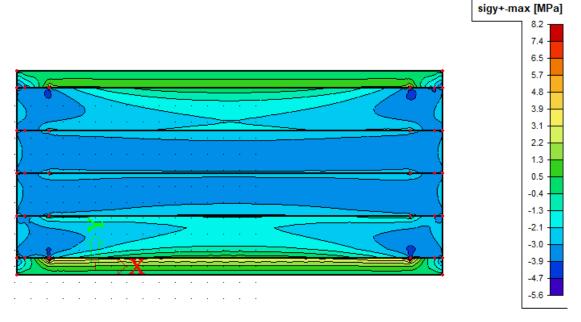


Figura B. 97: CFS - Tensão yz+ = 39 kgf/cm²

• Envoltória de combinação frequente de fadiga:

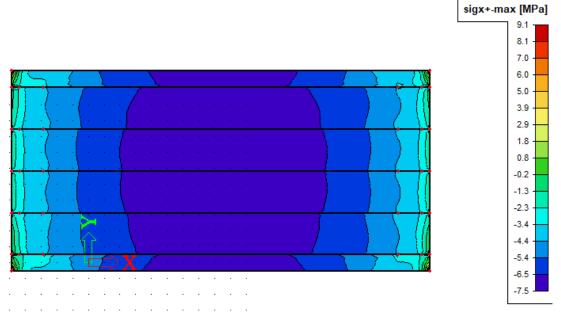


Figura B. 98: CFFad - Tensão $xz+=29 \text{ kgf/cm}^2$

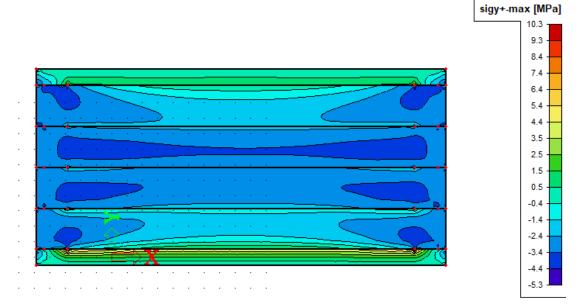


Figura B. 99: CFFad - Tensão yz+ = 54 kgf/cm²

• Envoltória de combinação última:

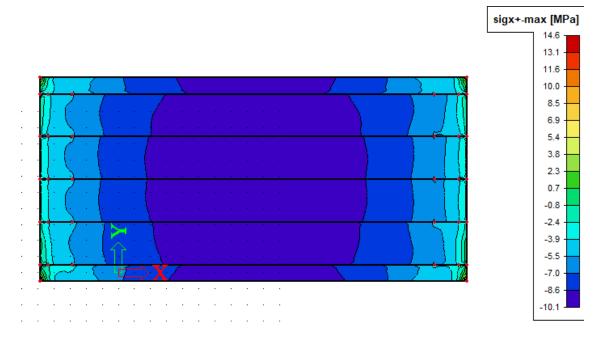


Figura B. 100: CUN - Tensão xz+ = 54 kgf/cm²

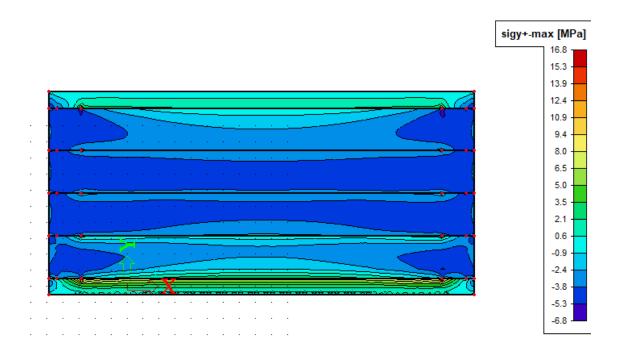


Figura B. 101: CUN - Tensão $yz+=94 kgf/cm^2$

Será diemensionada apenas a armadura transversal superior pois por definição a laje é armada apenas em uma direção.

LAJE - ARMADURA TRANSVERSAL SUPERIOR

Dados Gerais: Observações:

fck do concreto: 35 Мра Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2.25

Caracteristicas Geometricas Lajota:

Mom. De Inercia: 130208,33 cm4 Espessura da laje: 0,25 m Espessura da capa: CG. 12,50 0,15 m cm Ø armadura transversal: Largura da laje: 13,00 m 12,50 mm Comprimento da laje: 26,00 Centro de massa armadura: 0,05050 m αe: 15,00 XII long: 7,17

Esforços:

yz + Tensão Momento CCP 14,00 1,458333 tf.m kgf/cm² CFS 39,00 kgf/cm² 4,0625 tf.m CFFad. kgf/cm² 54,00 5,625 tf.m 9,791667 tf.m CUN kgf/cm² 94,00

Dimensionamento armadura:

As min: 2,25 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	2,00	4,00	6,00	10,00	16,00	26,00	40,00
Controle de fadiga		190	190	190	190	185	175

15 16 13,40 cm²/m As:

Mcwd: 108,27 kN.m 10,83 tfm ok!

Verificação da fadiga

σs, max = 23,90 kN/cm² 238,97 Mpa σ s, min = 6,20 kN/cm² \rightarrow 61,96 Mpa

 $\Delta \sigma s = \sigma s$, max - σs , min = **177,02** Mpa ok!

Verificação da fissuração

Md fissuração: 3,51 tf.m

17,26 172,59 Mpa σs = kN/cm²

Wk1 = 0,08 W limite = 0,3 mm

Wk2 = 0,06 ok! mm

2.4.6.2. Lajotas e Amadura Inferior da Laje

 Peso próprio da lajota + Peso próprio da capa de concreto + Carga de serviço (100kgf/m²) – pré-cura da laje:

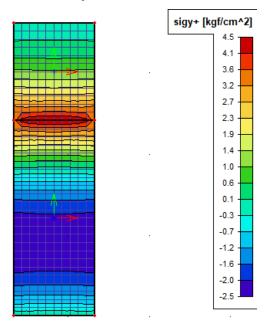


Figura B. 102: Tensão $yz+=4.5 \text{ kgf/cm}^2$

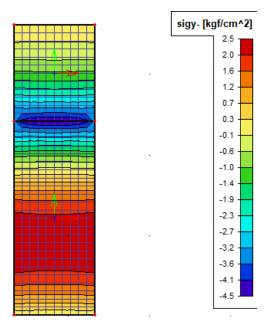


Figura B. 103: Tensão yz- = 2,5 kgf/cm²

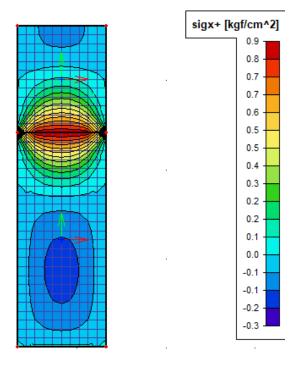


Figura B. 104: Tensão $xz+=0.9 \text{ kgf/cm}^2$

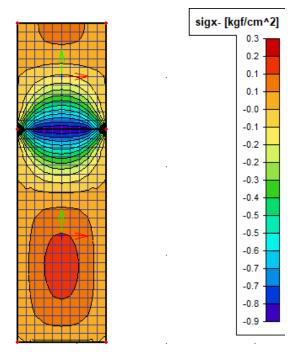


Figura B. 105: Tensão xz- = 0,3 kgf/cm^2

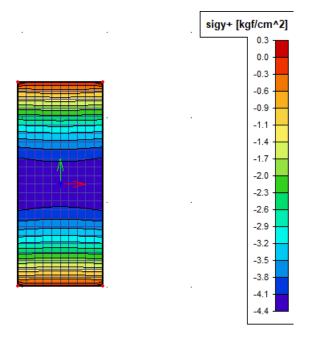


Figura B. 106: Tensão $yz+=0.3 \text{ kgf/cm}^2$

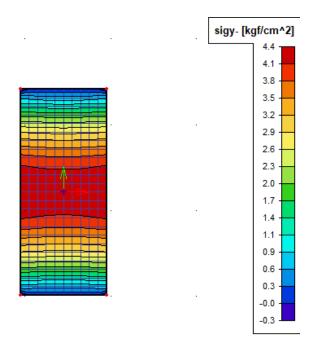


Figura B. 107: Tensão yz- = 4,4 kgf/cm²

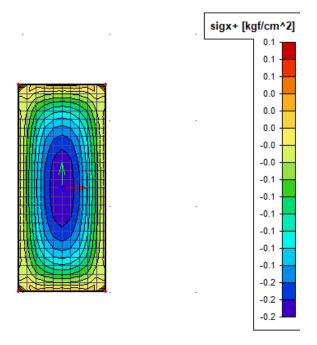


Figura B. 108: Tensão $xz+=0,1kgf/cm^2$

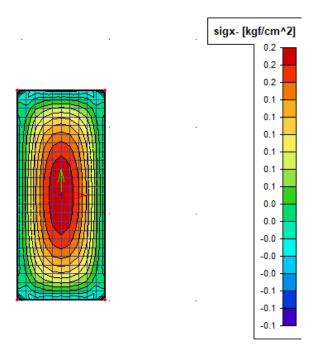


Figura B. 109: Tensão xz-= 0,2 kgf/cm^2

• Envoltória de combinação:

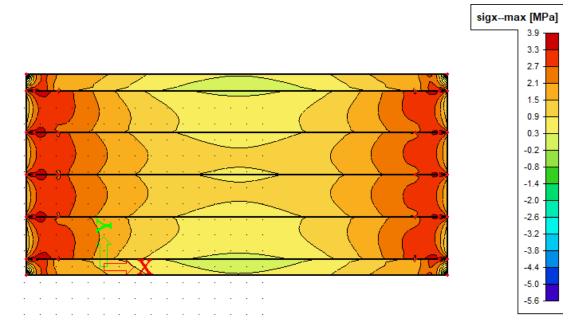


Figura B. 110: CP – Tensão $xz = 39kgf/cm^2$

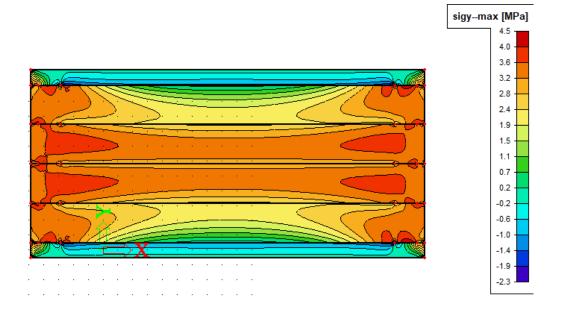


Figura B. 111: CP – Tensão yz- = $45kgf/cm^2$

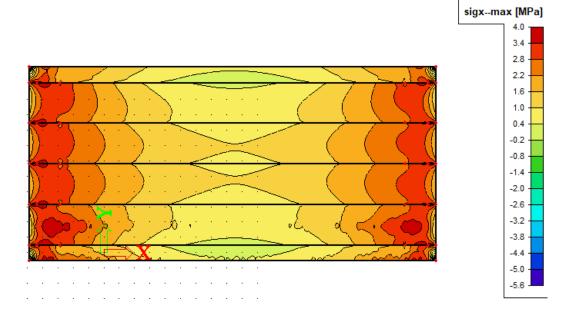


Figura B. 112: CFS – Tensão xz- = 40kgf/cm²

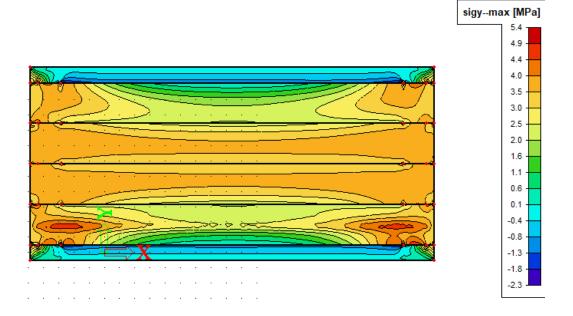


Figura B. 113: CFS- Tensão yz- = 54kgf/cm²

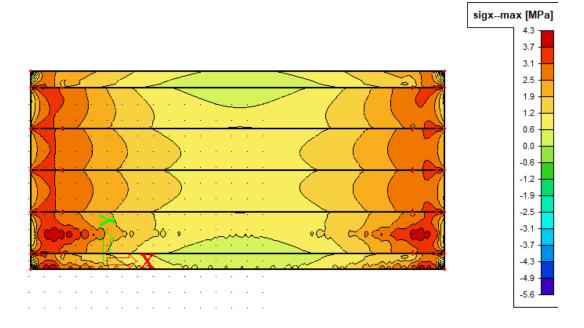


Figura B. 114: CFFad – Tensão xz- = 43kgf/cm²

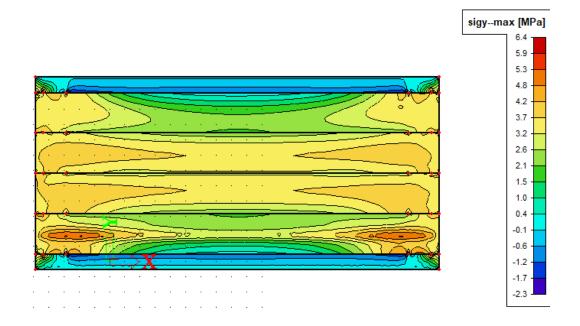


Figura B. 115: CFFad – Tensão yz- = 59kgf/cm²

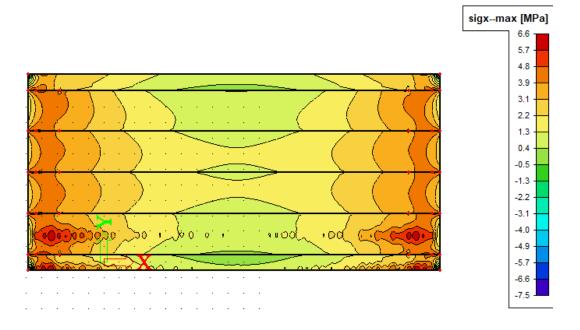


Figura B. 116: CUN – Tensão xz- = 66kgf/cm²

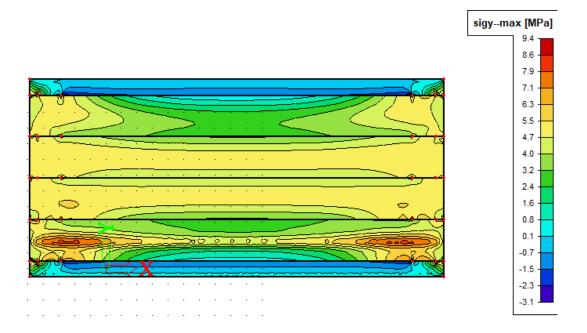


Figura B. 117: CUN – Tensão yz- = 94kgf/cm²

• Deformação lajota extrema e interna:

Lajota extrema (PP+Carga da laje+Carga de utilidade)

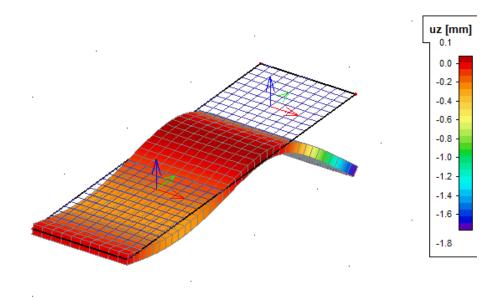


Figura B. 118: Deformação = 0,18cm (valores estão em mm)

Lajota interna (PP+Carga da laje+Carga de utilidade)

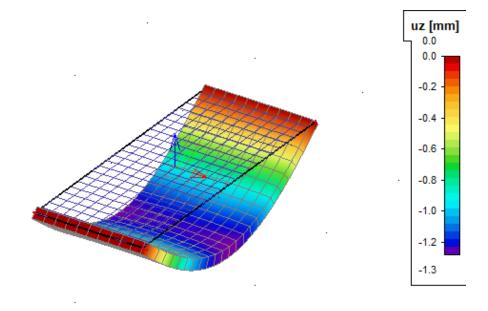


Figura B. 119: Deformação = 0,1,3cm (valores estão em mm)

• Verificação pós-cura (armadura igual à utilizada na lajota externa)

LAJE - ARMADURA LONGITUDINAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota: Esforços:

Espessura da laje:	0,25	m	XZ	Tensão		Momento	
Espessura da capa:	0,15	m	CCP	39,00	kgf/cm²	4,0625	tf.m
Largura da laje:	13,00	m	CFS	50,00	kgf/cm²	5,208333	tf.m
Comprimento da laje:	26,00	m	CFFad.	43,00	kgf/cm²	4,479167	tf.m
αe:	15,00		CUN	66,00	kgf/cm²	6,875	tf.m
Mom. De Inercia:	130208,3	cm4					
CG:	12,50	cm					
Ø armadura transversal:	0,00	mm					
Ø armadura transversal lajota:	25,00	mm					
Centro de massa armadura:	0,10625	m					
Centro de massa arm. lajota:	0,06125	m					
XII long:	5,92						

Dimensionamento armadura:

As min: 2,25 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	3,00	5,00	8,00	12,00	20,00	32,00	50,00
Controle de fadiga		190	190	190	190	185	175

As lajota: \emptyset 6,3 c/ 20 \rightarrow 1,56 cm²/m
As: \emptyset 12,5 c/ 10 \rightarrow 12,27 cm²/m
13,83

Mcwd: 12,68 kN.m \rightarrow 1,27 tfm Mcwd: 70,00 kN.m \rightarrow 7,00 tfm ok!

Verificação da fadiga

 σ s, max = 26,12 kN/cm² \rightarrow 261,16 Mpa σ s, min = 23,69 kN/cm² \rightarrow 236,87 Mpa $\Delta \sigma$ s = σ s, max - σ s, min = **24,29** Mpa

Verificação da fissuração

ok!

mm

Md fissuração: 3,51 tf.m

 $\sigma s = 30,37 \text{ kN/cm}^2 \rightarrow 303,67 \text{ Mpa}$ Wk1 = 0,18 mm W limite = 0,3

Wk2 = 0,08 mm ok!

LAJE - ARMADURA TRANSVERSAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota: Esforços:

Espessura da laje: 0,25 χz¯ Tensão Momento m Espessura da capa: 0,15 **CCP** 45,00 kgf/cm² 4,6875 tf.m m Largura da laje: 13,00 **CFS** 54,00 kgf/cm² 5,625 tf.m m Comprimento da laje: 26,00 CFFad. 59,00 kgf/cm² 6,145833 tf.m m αe: 15,00 CUN 94,00 kgf/cm² 9,791667 tf.m

Mom. De Inercia: 130208,3 cm4 CG: 12,50 cm Ø armadura transversal: 12,50 mm 0,00 Ø armadura transversal lajota: mm Centro de massa armadura: 0,11565 m 0,03315 m Centro de massa arm. lajota: XII long: 6,75

Dimensionamento armadura:

As min: 2,25 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	13,00	22,00	34,00	54,00	89,00	139,00	218,00
Controle de fadiga	190	190	190	190	190	185	175

As lajota: \emptyset 25 c/ 25 \rightarrow 19,63 cm²/m
As: \emptyset 6,3 c/ 10 \rightarrow 3,12 cm²/m
22,75

Mcwd: 167,98 kN.m \rightarrow 16,80 tfm Mcwd: 17,78 kN.m \rightarrow 1,78 tfm ok!

<u>Verificação da fadiga</u>

σs, max = 24,15 kN/cm² \rightarrow 241,53 Mpa σs, min = 18,42 kN/cm² \rightarrow 184,21 Mpa $\Delta \sigma s = \sigma s$, max - σs , min = 57,31 Mpa ok!

Verificação da fissuração

Md fissuração: 3,51 tf.m

 $\sigma s = 22,11 \text{ kN/cm}^2 \rightarrow 221,06 \text{ Mpa}$

Wk1 = 0,05 mm W limite = 0,3 mm

Wk2 = 0.03 mm ok!

• Verificação pós-cura (armadura igual à utilizada na lajota interna)

LAJE - ARMADURA LONGITUDINAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota: Esforços:

Espessura da laje:	0,25	m	XZ	Tensão		Momento	
Espessura da capa:	0,15	m	CCP	39,00	kgf/cm ²	4,0625	tf.m
Largura da laje:	13,00	m	CFS	50,00	kgf/cm ²	5,208333	tf.m
Comprimento da laje:	26,00	m	CFFad.	43,00	kgf/cm ²	4,479167	tf.m
αe:	15,00		CUN	66,00	kgf/cm²	6,875	tf.m

130208,3 cm4 Mom. De Inercia: CG: 12,50 cm Ø armadura transversal: 0,00 mm Ø armadura transversal lajota: 12,50 mm Centro de massa armadura: 0,10625 m Centro de massa arm. lajota: 0,04875 m XII long: 5,92

Dimensionamento armadura:

As min: 2,25 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	3,00	5,00	8,00	12,00	21,00	33,00	51,00
Controle de fadiga		190	190	190	190	185	175

As lajota: \emptyset 6,3 c/ 20 \rightarrow 1,56 cm²/m
As: \emptyset 12,5 c/ 10 \rightarrow 12,27 cm²/m
13,83

Mcwd: 13,53 kN.m \rightarrow 1,35 tfm Mcwd: 70,00 kN.m \rightarrow 7,00 tfm ok!

<u>Verificação da fadiga</u>

Verificação da fissuração

Md fissuração: 3,51 tf.m $\sigma s = 30,37 \text{ kN/cm}^2 \rightarrow 303,67 \text{ Mpa}$

Wk1 = 0,18 mm W limite = 0,3 mm

Wk2 = 0,08 mm ok!

LAJE - ARMADURA TRANSVERSAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Direção x = Direção longitudinal da obra Mpa Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota: Esforços:

Espessura da laje:	0,25	m	XZ	Tensão		Momento	
Espessura da capa:	0,15	m	CCP	45,00	kgf/cm²	4,6875	tf.m
Largura da laje:	13,00	m	CFS	54,00	kgf/cm²	5,625	tf.m
Comprimento da laje:	26,00	m	CFFad.	59,00	kgf/cm ²	6,145833	tf.m
αe:	15,00		CUN	94,00	kgf/cm ²	9,791667	tf.m
Mom. De Inercia:	130208,3	cm4					
CG:	12,50	cm					
Ø armadura transversal:	12,50	mm					
\emptyset armadura transversal lajota:	0,00	mm					
Centro de massa armadura:	0,11565	m					
Centro de massa arm. lajota:	0,03315	m					
XII long:	5,90						

Dimensionamento armadura:

As min: 2,25 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	13,00	22,00	34,00	54,00	89,00	139,00	218,00
Controle de fadiga	190	190	190	190	190	185	175

As lajota: 12,5 12,27 cm²/m cm²/m 3,12 As:

15,39

mm

ok!

10,90 Mcwd: 109,00 kN.m tfm Mcwd: 17,78 kN.m 1,78 tfm

Verificação da fadiga

σs, max = 34,82 kN/cm² \rightarrow 348,22 Mpa σs, min = 26,56 kN/cm² 265,59 Mpa $\Delta \sigma s = \sigma s$, max - σs , min = **82,63** Mpa ok!

Verificação da fissuração

Md fissuração: 3,51 tf.m

31,87 kN/cm² 318,71 Mpa σs = W limite = Wk1= 0,10 mm 0,3

Wk2 = 0,04 mm ok!

• Verificação pré-cura

LAJOTA EXTERNA - ARMADURA LONGITUDINAL SUPERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Espessura da lajota: 0,10 Mom. De Inercia: 8333,33 cm4 m Largura da lajota: 1,00 CG: 5,00 m cm Comprimento da lajota externa 2,40 Ø armadura transversal: 8,00 mm m 15,00 Centro de massa armadura: 0,04115 m αe:

XII long: 1,44

Esforços:

CP + CS Tensão Momento XZ^{\dagger} 0,90 kgf/cm² 0,02 tf.m

Dimensionamento armadura:

As min: 1,5 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 6,3 c/ 20 \rightarrow 1,56 cm²/m

Mcwd: 3,88 kN.m \rightarrow 0,39 tfm ok!

LAJOTA EXTERNA - ARMADURA TRANSVERSAL SUPERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Espessura da lajota: Mom. De Inercia: 0,10 8333,33 cm4 m Largura da lajota: 1,00 CG: 5,00 cm m Comprimento da lajota externa 2,40 Ø armadura longitudinal: 0,00 mm m αe: 15,00 Centro de massa armadura: 0,03400 m

XII long: 1,72

Esforços:

CP + CS Tensão Momento

 yZ^{+} 4,50 kgf/cm² 0,08 tf.m

Dimensionamento armadura:

As min: 1,5 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 8 c/ 25 \rightarrow 2,01 cm²/m

Mcwd: 5,59 kN.m \rightarrow 0,56 tfm ok!

LAJOTA EXTERNA - ARMADURA LONGITUDINAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Espessura da lajota: Mom. De Inercia: 0,10 8333,33 cm4 m Largura da lajota: 1,00 CG: 5,00 cm m Comprimento da lajota externa 2,40 Ø armadura transversal: 25,00 mm m Centro de massa armadura: 0,05815 m αe: 15,00

XII long: 1,18

Esforços:

CP + CS $Tens\~ao$ Momento XZ 0,30 kgf/cm² 0,01 tf.m

Dimensionamento armadura:

As min: 1,5 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 6,3 c/ 20 \rightarrow 1,56 cm²/m

Mcwd: 2,73 kN.m \rightarrow 0,27 tfm ok!

LAJOTA EXTERNA - ARMADURA TRANSVERSAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Espessura da lajota: Mom. De Inercia: 0,10 8333,33 cm4 m Largura da lajota: 1,00 CG: 5,00 cm m Comprimento da lajota externa 2,40 Ø armadura longitudinal: 0,00 m mm Centro de massa armadura: αe: 15,00 0,04250 m

XII long: 3,58

Esforços:

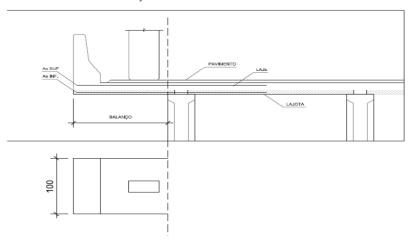
CP + CS $Tens\~ao$ Momento yZ^{\dagger} 2,50 kgf/cm² 0,04 tf.m

Dimensionamento armadura:

As min: 1,5 cm²/m

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 25 c/ 25 \rightarrow 19,63 cm²/m


Mcwd: 31,94 kN.m \rightarrow 3,19 tfm ok!

Armadura de cisalhamento

POSIÇÃO 1 - FACE EXTERNA DA VIGA EXTREMA

Comprimento do balanço: 0,9 m 0,25 m Espessura da laje e lajota: 35 Mpa fck do concreto: cm² As: Peso do guarda rodas: 0,78 tf 7,8 kΝ 75 Veiculo: 7,5 tf kN Peso proprio laje e lajota: 0,225 tf 2,25 kΝ Pavimento: 0,1512 tf 1,512 kN Recapeamento: 0,18 tf 1,8 kN

Vsd = 123,71 kN

ok!

Se Vsd < Vrd1 = Não precisa armar a laje ao cisalhamento.

 $Vrd1 = \tau \rho d * k * (1,2 + 40 p1) + 0,15 * \sigma cp) * bw * d = 148,96 kN$

 $\tau \rho d = 0,40$ Mpa d = 22,5 cm k = 1,375 $\rho 1 = 0$

 $\sigma cp = 0$ bw = 100 cm

LAJOTA INTERNA - ARMADURA LONGITUDINAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Espessura da lajota: Mom. De Inercia: 0,10 8333,33 cm4 m Largura da lajota: 1,00 5,00 cm m Comprimento da lajota interna 3,57 Ø armadura transversal: 12,50 m mm Centro de massa armadura: 0,04565 m αe: 15,00

XII long: 1,38

Esforços:

CP + CS $Tens\~{a}o$ Momento XZ 0,20 kgf/cm² 0,00 tf.m

Dimensionamento armadura:

As min: $1,5 \text{ cm}^2/\text{m}$

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 6,3 c/ 20 \rightarrow 1,56 cm²/m

Mcwd: 3,58 kN.m \rightarrow 0,36 tfm ok!

LAJOTA INTERNA - ARMADURA TRANSVERSAL INFERIOR

Dados Gerais: Observações:

fck do concreto: 35 Mpa Direção x = Direção longitudinal da obra Tipo de aço: 50 kN/cm² Direção y = Direção transversal da obra

Fctk, inf: 2,25

Caracteristicas Geometricas Lajota:

Mom. De Inercia: Espessura da lajota: 0,10 8333,33 cm4 m Largura da lajota: 1,00 5,00 cm m Comprimento da lajota externa 2,40 Ø armadura longitudinal: 0,00 m mm Centro de massa armadura: αe: 15,00 0,03625 m

XII long: 3,34

Esforços:

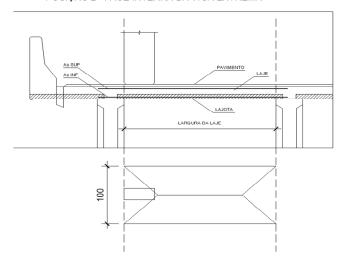
CP + CS Tensão Momento YZ 4,40 kgf/cm² 0,07 tf.m

Dimensionamento armadura:

As min: $1,5 \text{ cm}^2/\text{m}$

Ø	6,3	8	10	12,5	16	20	25
Espaçamento (cm)	20,00	33,00	52,00	81,00	134,00	209,00	327,00
Controle de fadiga		190	190	190	190	185	175

As: \emptyset 12,5 c/ 10 \rightarrow 12,27 cm²/m


Mcwd: 27,32 kN.m \rightarrow 2,73 tfm ok!

Armadura de cisalhamento

POSIÇÃO 2 - FACE INTERNA DA VIGA EXTREMA

Largura da laje: 1,8 m 0,25 m Espessura da laje e lajota: 35 Mpa fck do concreto: cm² As: Veiculo: 7,5 tf 75 kΝ Peso proprio laje e lajota: 0,45 tf 4,5 kΝ Pavimento: 0,3024 tf 3,024 kΝ Recapeamento: 0,36 tf 3,6 kΝ

Vsd = 120,57 kN

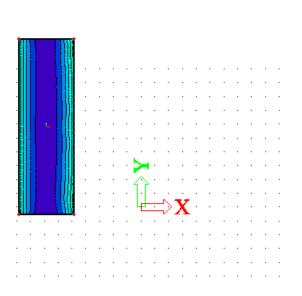
Se Vsd < Vrd1 = Não precisa armar a laje ao cisalhamento.

$$Vrd1 = \tau pd * k * (1,2 + 40 p1) + 0,15 * \sigma cp) * bw * d = 148,96 kN$$

 $\tau \rho d = 0,40$ Mpa d = 22,5 cm k = 1,375

ok!

p1 = σcp =


bw =

0 0 100 cm

2.4.6.3. Laje de Transição

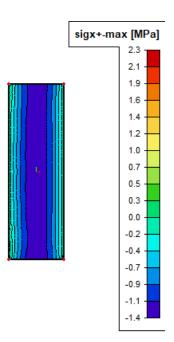
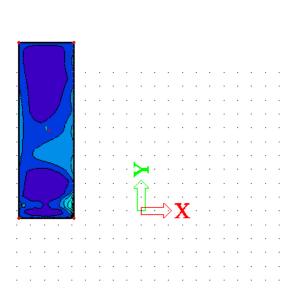



Figura B. 120: Tensão $xz+=23kgf/cm^2$

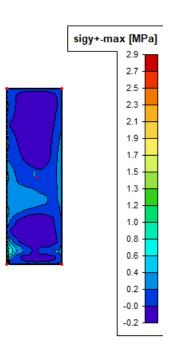


Figura B. 121: Tensão xz- = 29kgf/cm²

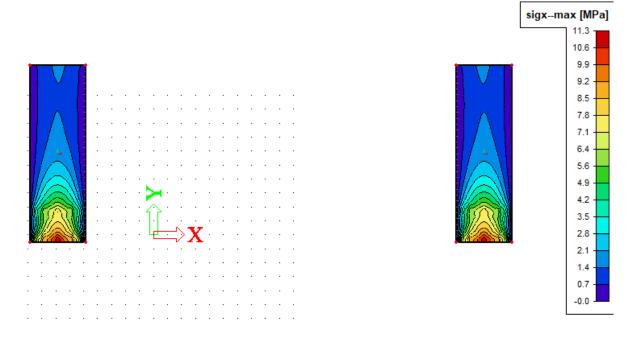
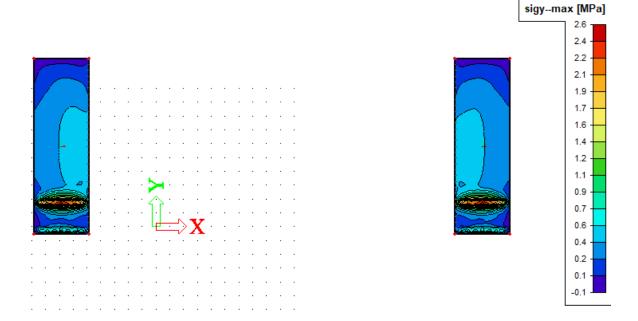
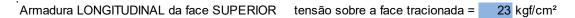
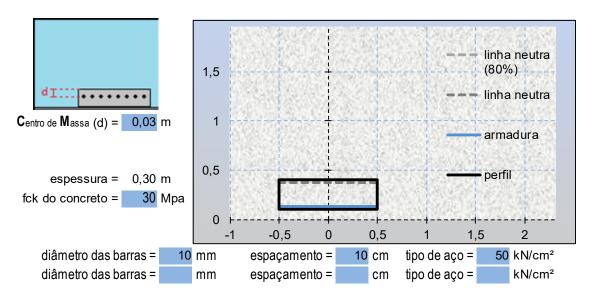


Figura B. 122: Tensão yz+ = 113kgf/cm²


Figura B. 123: Tensão yz- = 26kgf/cm²

DIMENSIONAMENTO:

CÁLCULO DA ARMADURA

momento de inércia da seção = 225000 cm⁴
distância do CG até a face comprimida = 15 cm
momento solicitante = 3384,45 kN.cm = 3,45 t.m = 33,8445 kN.m

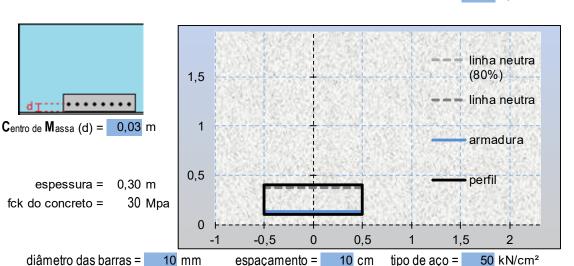
7,854 cm² de aço nas barras = 341,5 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 2,34 cm resistência da área de concreto comprimida (Rcwd) = 341,5 kN momento resistente da área de concreto (Mcwd) = 87,63 kN.m

momento último resistente M(u) = Mcwd = 87,632032 kN.m (62,594309 kN.m se dividido por 1,4)

29 kgf/cm²

kN/cm²

Armadura LONGITUDINAL da face INFERIOR


espessura =

diâmetro das barras =

diâmetro das barras =

fck do concreto =

tensão sobre a face tracionada =

cm

tipo de aço =

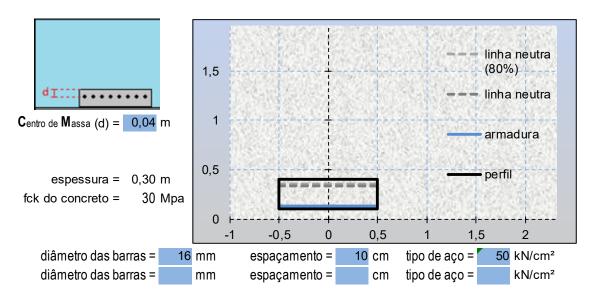
CÁLCULO DA ARMADURA

espaçamento =

225000 cm⁴ momento de inércia da seção = distância do CG até a face comprimida = 15 cm

mm

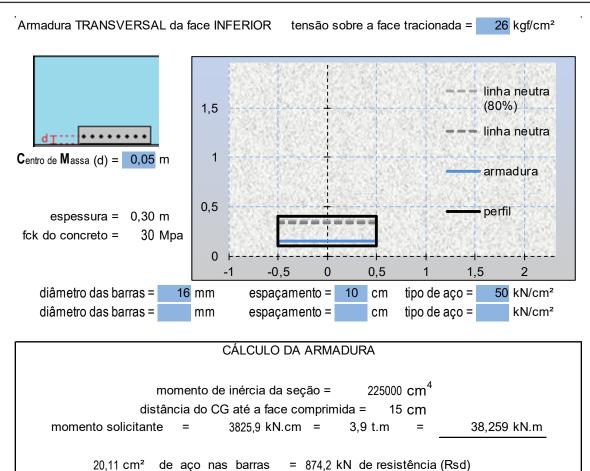
momento solicitante 4267,35 kN.cm = 4,35 t.m 42,6735 kN.m


= 341,5 kN de resistência (Rsd) 7,854 cm² de aço nas barras distância entre a linha neutra e a face comprimida (x) = 2,34 cm resistência da área de concreto comprimida (Rcwd) = 341,5 kN momento resistente da área de concreto (Mcwd) = 87,63 kN.m

momento último resistente M(u) = Mcwd = 87,632032 kN.m (62,594309 kN.m se dividido por 1,4)

Armadura TRANSVERSAL da face SUPERIOR tensão sobre a face tracionada = 113 kgf/cm²

CÁLCULO DA ARMADURA


momento de inércia da seção = 225000 cm⁴
distância do CG até a face comprimida = 15 cm
momento solicitante = 16627,95 kN.cm = 17 t.m = 166,2795 kN.m

20,11 cm² de aço nas barras = 874,2 kN de resistência (Rsd) distância entre a linha neutra e a face comprimida (x) = 6 cm resistência da área de concreto comprimida (Rcwd) = 874,2 kN momento resistente da área de concreto (Mcwd) = 209,6 kN.m

momento último resistente M(u) = Mcwd = 209,58769 kN.m (149,70549 kN.m se dividido por 1,4)

2.5. Modelo 5 – Verificação da Longarina na Pré-Cura

2.5.1. Carregamento Permanentes

Nas imagens a seguir as cargas apresentadas estão em toneladas. Após a modelagem da estrutura, foram considerados os seguintes carregamentos.

distância entre a linha neutra e a face comprimida (x) =

resistência da área de concreto comprimida (Rcwd) = 874,2 kN momento resistente da área de concreto (Mcwd) = 197,6 kN.m momento último resistente M(u) = Mcwd = 197,56768 kN.m (141,11977 kN.m se dividido por 1,4

2.5.1.1. Peso Próprio da Estrutura

O peso próprio é função do peso específico dos materiais em questão, exibidos conforme a tabela a seguir.

Material	V (tf/m³)	$V(kN/m^3)$	
Concreto Armado	2,5	25	
Concreto Protendido	2,5	25	
Concreto Simples	2,2	22	
Aço	7,85	78,5	

Segue, abaixo, o modelo de cálculo com a representação dos carregamentos devidos ao peso próprio.

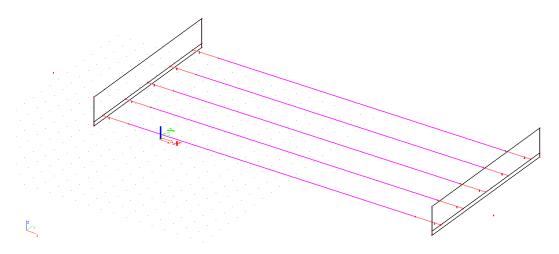


Figura B. 124: Carga de Peso Próprio das barras

2.5.1.2. Peso Próprio da Laje

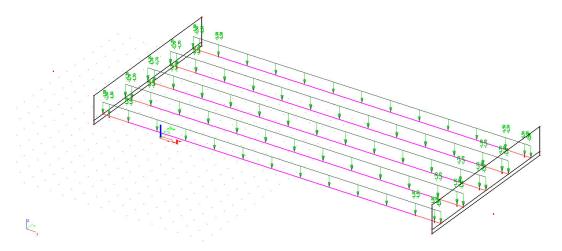


Figura B. 125: Carga de Peso Próprio da Laje

2.5.1.3. Carga de Construção

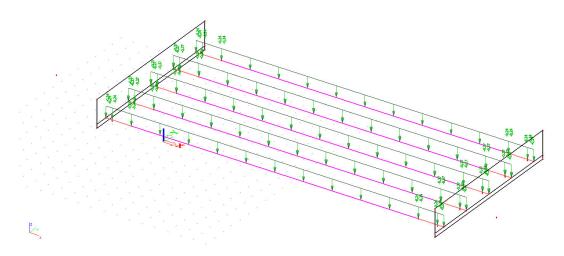


Figura B. 126: Carga de construção

2.5.1.4. Vento

Velocidade básica Vo:

Fator topografico S1:	1		
Rugosidade do terreno - Fator S2:	1,04		
Fator estatistico S3:	1,1		
Altura viga:	1,6	m	
Altura laje:	0,25	m	
Velocidade Caracteristica do vento:	51,48	m/s	
Pressão dinamica do vento:	1624,567	N/m^2	 0,162 tf/m ²
Coeficiente de arrasto:	1		
Altura ponte descarregada (viga + laje):	1,85	m	
Altura ponte carregada (viga + laje + 2m):	3,85	m	
Vento Ponte descarregada:	0,30	tf/m	
Vento Ponte carregada:	0,63	tf/m	

m/s

45

VENTO PONTE DESCARREGADA

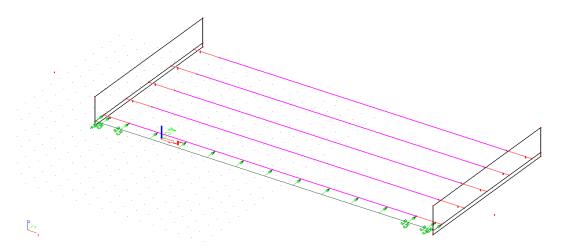


Figura B. 127: Carga de Vento para Ponte descarregada

2.5.1.5. Carga de Protensão

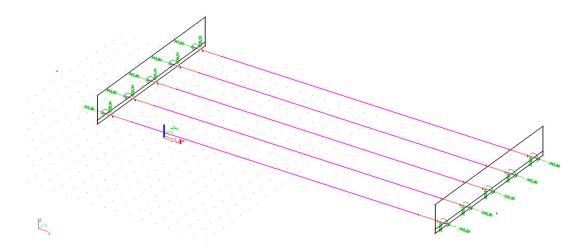


Figura B. 128: Carga de Protensão

2.5.2. Grupos de Carga

CP: Carga permanente: - Peso próprio

- Peso próprio da estrutura
- Peso próprio da laje
- Protensão
- Carga de construção

CV: Cargas de Vento: - Cargas horizontais em "Y"

• Vento com Ponte Descarregada

2.5.3. Combinações

Combinação unitária: 1,0 x CP + 1,0 x CV

2.5.4. Envoltórias de Combinações

Para o dimensionamento das peças estruturais serão retirados do programa envoltórias de combinações, sendo elas:

• Envoltória de combinação unitária;

2.5.5. Superestrutura

2.5.5.1. Longarinas

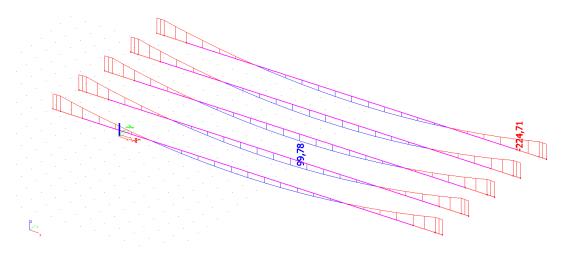


Figura B. 129: C. UNITARIA – Momento Fletor M2 = 99,78 tfm/-224,71 tfm

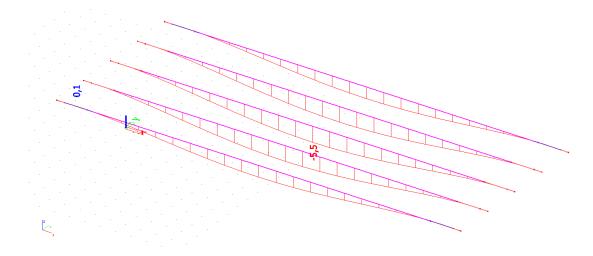


Figura B. 130: Deslocamento = 0,55 cm (valores estão em mm)

3. Emendas por Transpasse

Para o detalhamento das armaduras com emendas deverão ser utilizados os comprimentos dos traspasses calculados na sequência.

Comprimento de ancoragem reta: $l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}}$

Sendo:

$$f_{bd} = \eta_1.\eta_2.\eta_3.f_{ctd}$$

 $\eta_1 = 2,25$ (Aço CA-50 barra alta aderência)

 η_2 = 1,0 (para situação de boa aderência)

 $\eta_2 = 0.7$ (para situação de má aderência)

 $\eta_3 = 1.0$ (para barra com $\phi < 32$ mm)

Resistência de aderência à tração: $f_{ctd} = \frac{0.21}{1.4} \cdot \sqrt[3]{f_{ck}^2}$.

Para o concreto com
$$f_{ck} = 35MPc$$
, tem-se: $f_{ctd} = \frac{0.21}{1.4} \cdot \sqrt[3]{35^2} = 1,605$.

Tensão de aderência: f_{bd} = 2,25x1,0x1,0x1,605=3,611 (posição boa aderência)

$$f_{bd} = 2,25x0,7x,0x1,605 = 2,528$$
 (Posição má aderência)

Comprimento de ancoragem para o aço CA-50 com

$$f_{yk} = 500MPa \Leftrightarrow f_{yd} = \frac{500}{1,15} \cong 435MPa$$

$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{3,611} \cong 31\phi$$
 (Posição boa aderência)

$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{2,528} \cong 44\phi$$
 (Posição má aderência)

Para o concreto com
$$f_{ck} = 30MPa$$
, tem-se: $f_{ctd} = \frac{0.21}{1.4}.\sqrt[3]{30^2} = 1.448$.

Tensão de aderência: f_{bd} = 2,25x1,0x1,0x1,448=3,259 (posição boa aderência)

$$f_{bd} = 2,25x0,7.x,0x1,448 = 2,281$$
 (Posição má aderência)

Comprimento de ancoragem para o aço CA-50 com

$$f_{yk} = 500MPa \Leftrightarrow f_{yd} = \frac{500}{1,15} \cong 435MPa$$

$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{3,259} \approx 34\phi$$
 (Posição boa aderência)

$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{2,281} \cong 48\phi$$
 (Posição má aderência)

Para o concreto com
$$f_{ck} = 25MPa$$
, tem-se: $f_{ctd} = \frac{0.21}{1.4} \cdot \sqrt[3]{25^2} = 1.282$.

Tensão de aderência: $f_{bd} = 2,25x1,0x1,0x1,282 = 2,885$ (posição boa aderência)

$$f_{bd}$$
 = 2,25x0,7.x,0x1,282=2,019 (Posição má aderência)

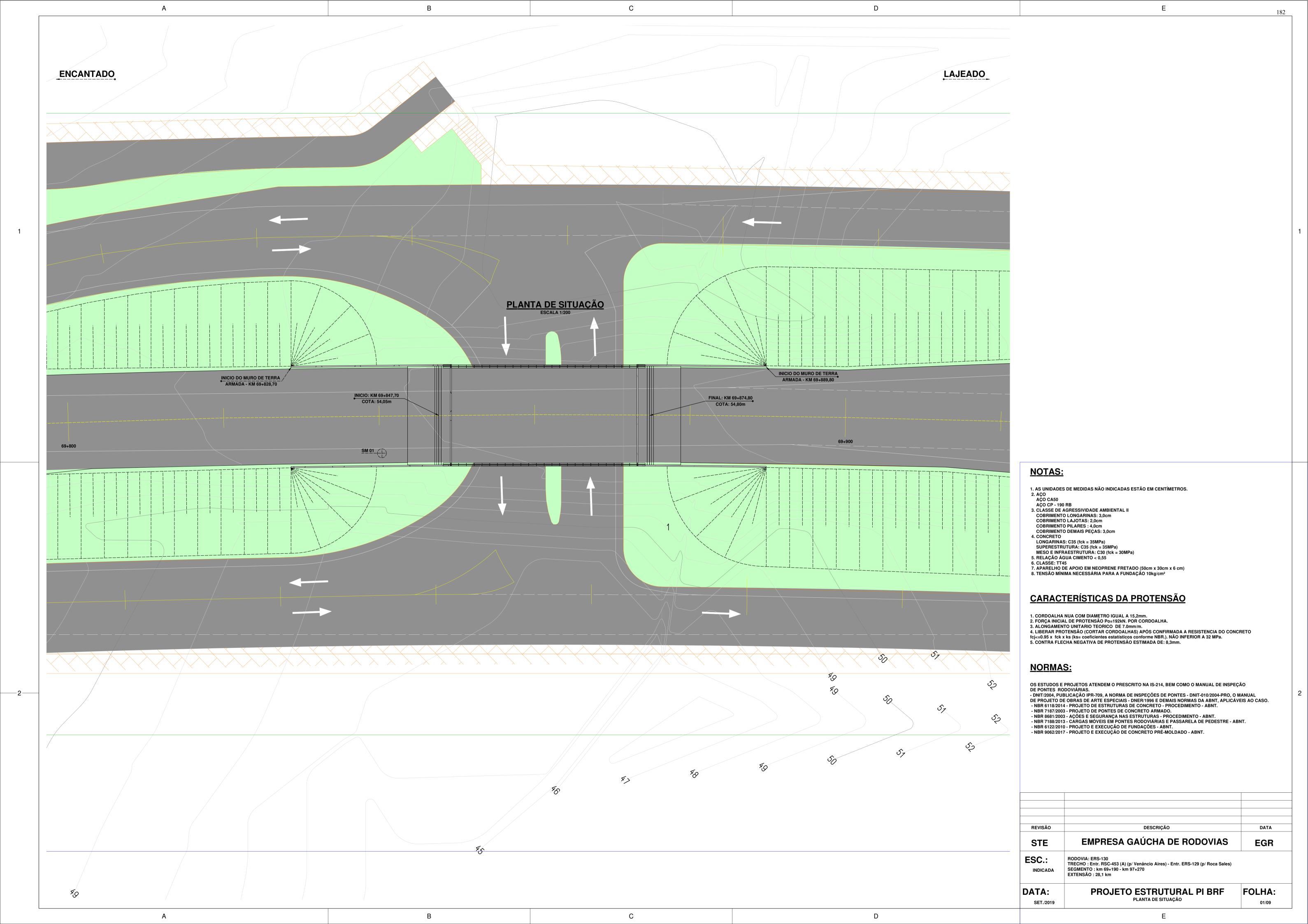
Comprimento de ancoragem para o aço CA-50 com

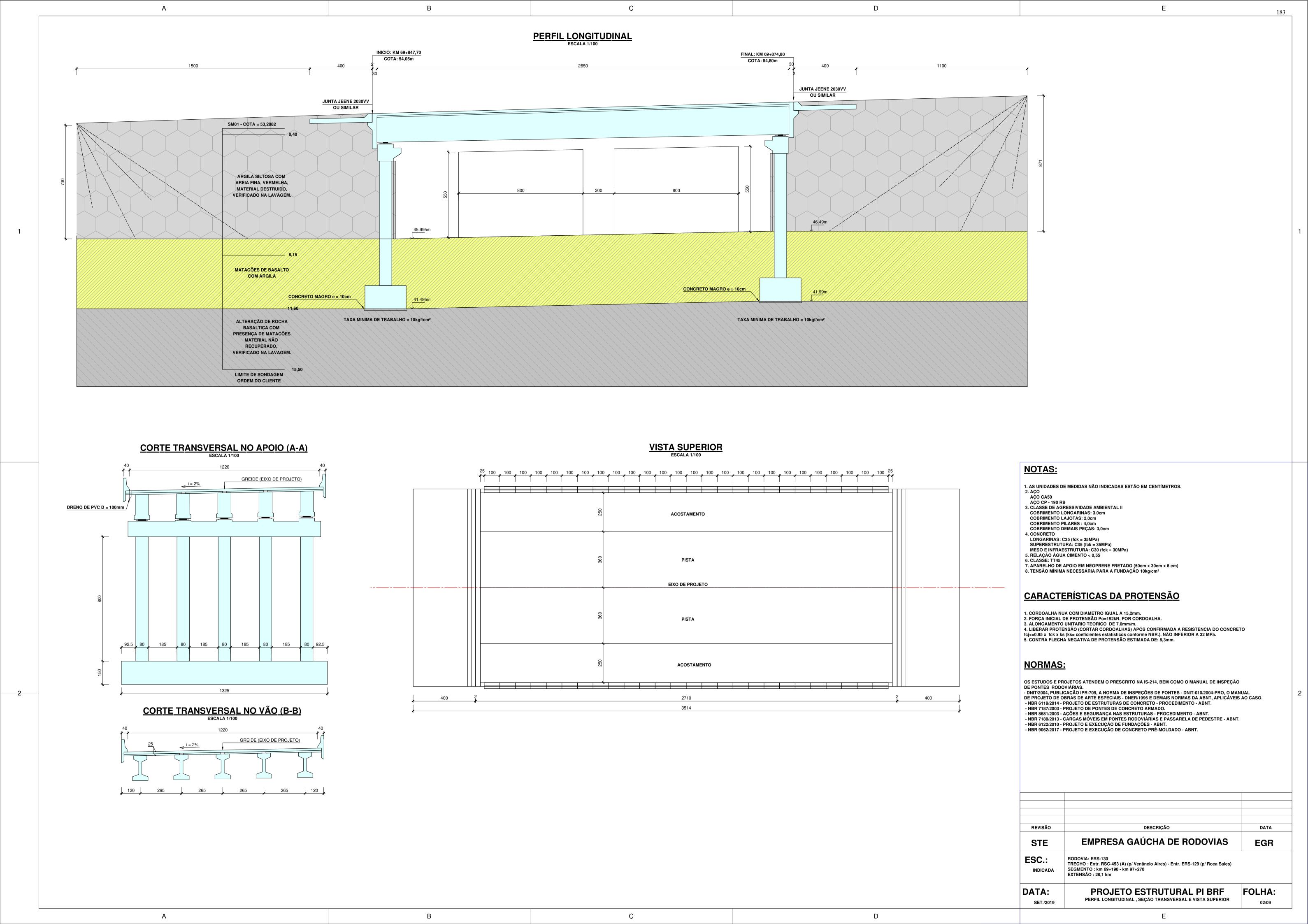
$$f_{yk} = 500MPa \Leftrightarrow f_{yd} = \frac{500}{1,15} \cong 435MPa$$

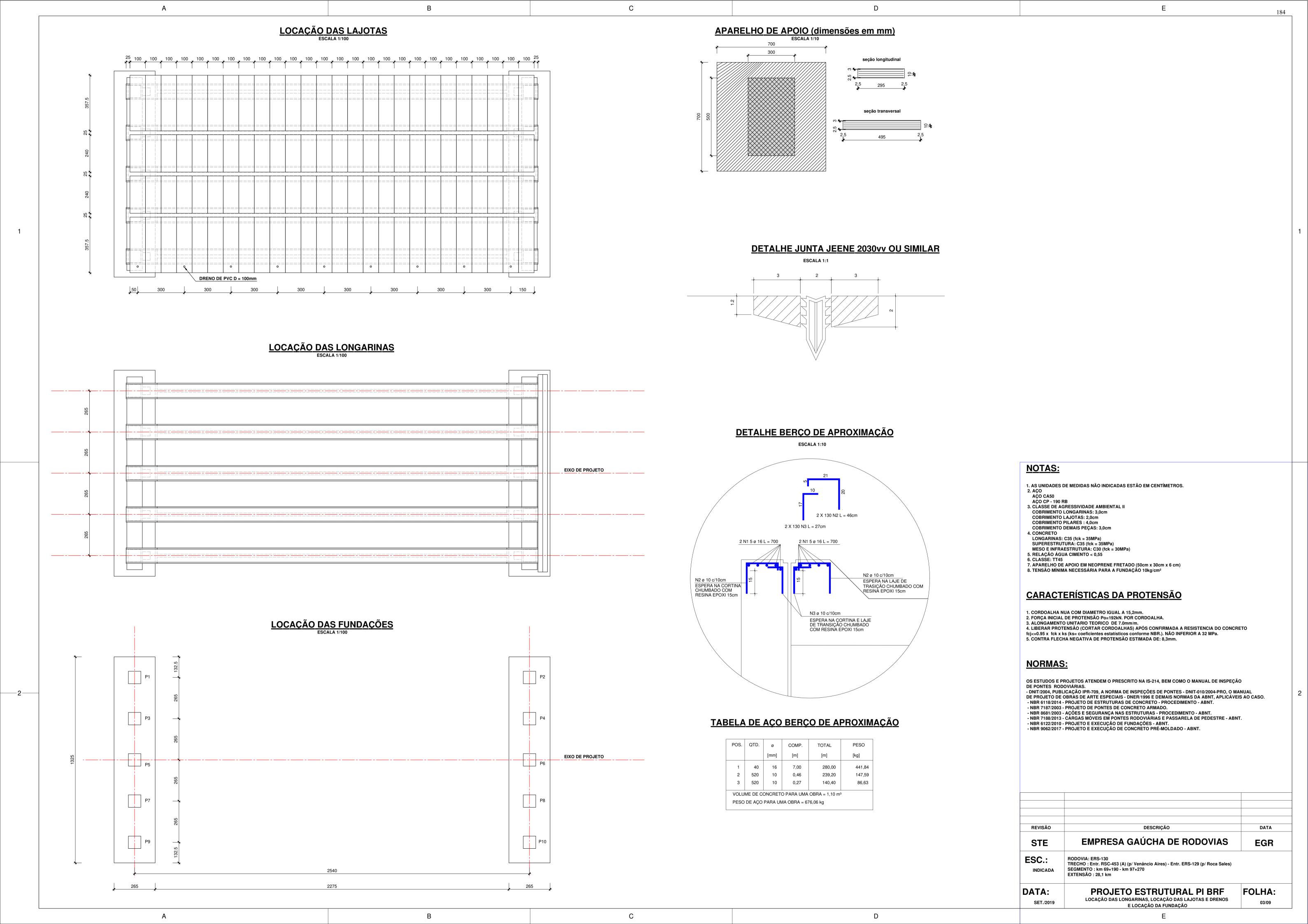
$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{2,885} \cong 38\phi$$
 (Posição boa aderência)

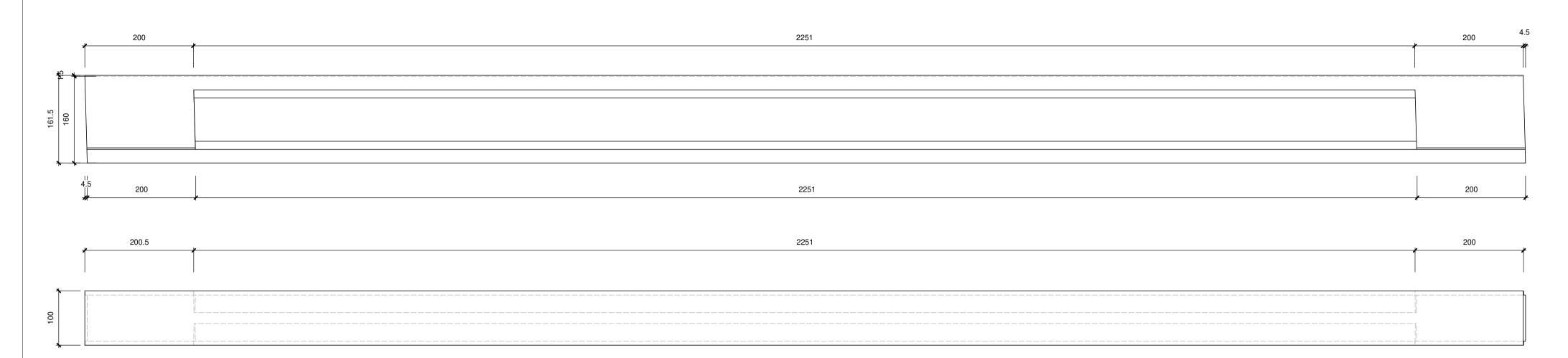
$$l_b = \frac{\phi}{4} \cdot \frac{f_{yd}}{f_{bd}} = \frac{\phi}{4} \cdot \frac{435}{2,019} \cong 54\phi$$
 (Posição má aderência)

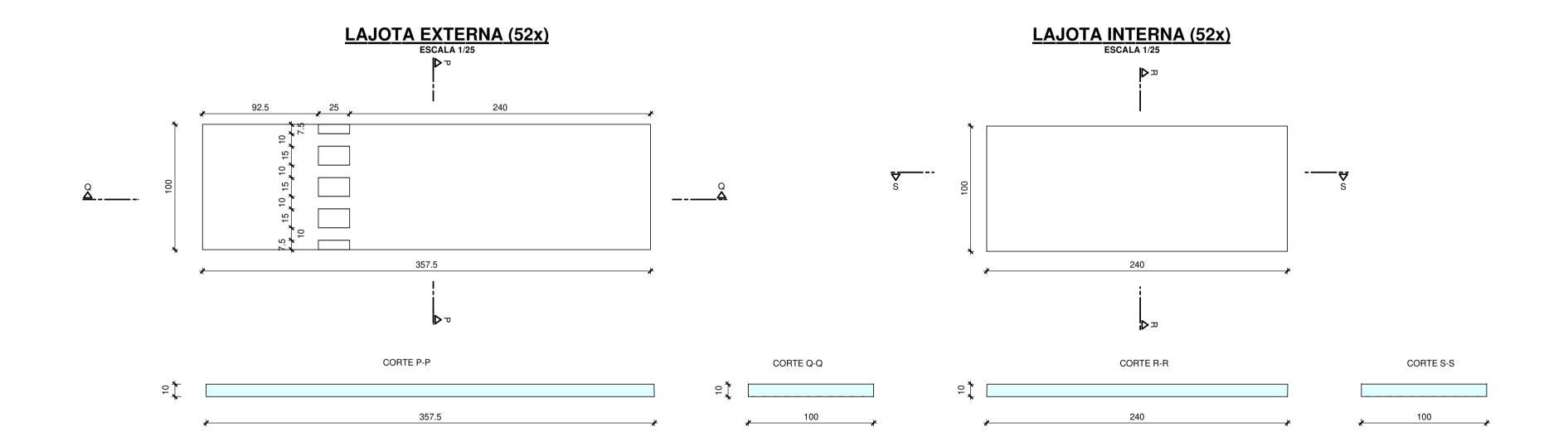
Barra na posição inferior da laje (posição de boa aderência).

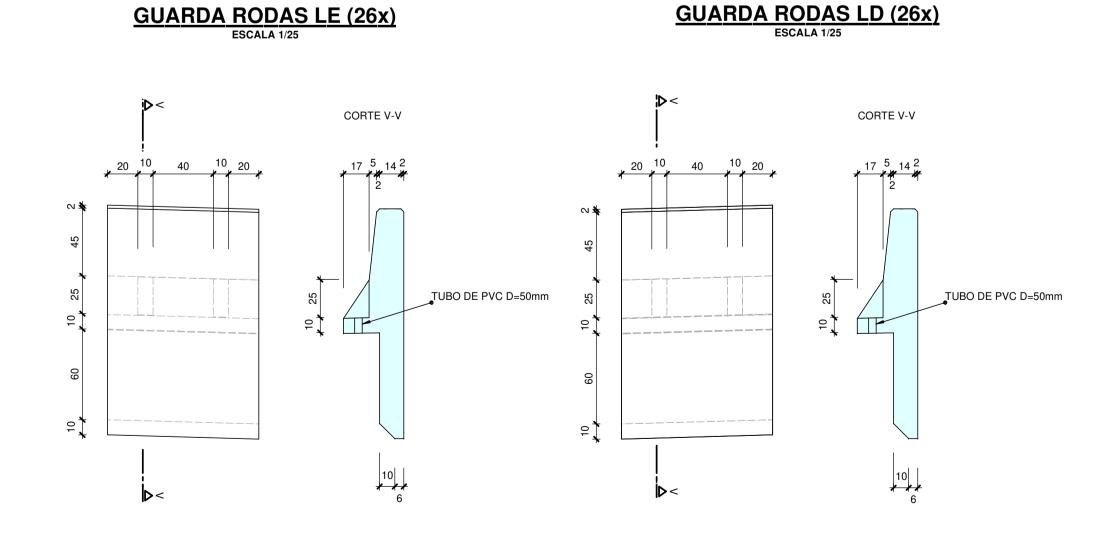

Barra na posição superior da laje (posição de má aderência).

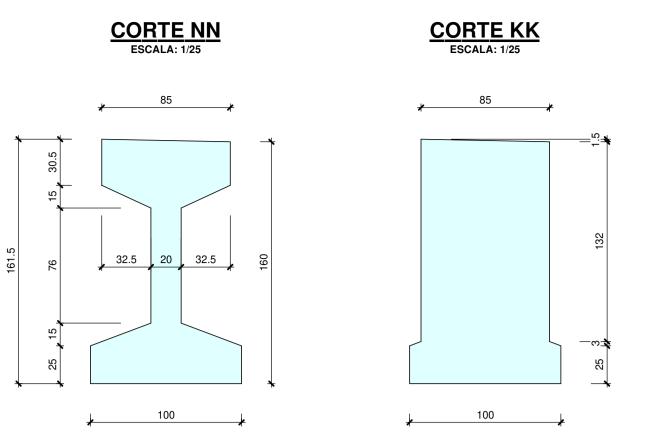

Comprimento de ancoragem básica (lb)								
Ø	Região de boa aderência			Região de má aderência				
	C25	C30	C35	C25	C30	C35		
6,3	23,94	21,42	19,53	34,02	30,24	27,72		
8,0	30,40	27,20	24,80	43,20	38,40	35,20		
10,0	38,00	34,00	31,00	54,00	48,00	44,00		
12,5	47,50	42,50	38,75	67,50	60,00	55,00		
16,0	60,80	54,40	49,60	86,40	76,80	70,40		
20,0	76,00	68,00	62,00	108,00	96,00	88,00		
25,0	95,00	85,00	77,50	135,00	120,00	110,00		
Compri	Comprimento de emenda por transpasse (lb x α_{ot}) - (% de emenda >1/2) α_{ot} =2,0							
α	Regiã	o de boa adei	rência	Região de má aderência				
Ø	C25	C30	C35	C25	C30	C35		
6,3	47,88	42,84	39,06	68,04	60,48	55,44		
8,0	60,80	54,40	49,06	86,40	76,80	70,40		
10,0	76,00	68,00	62,00	108,00	96,00	88,00		
12,5	95,00	85,00	77,50	135,00	120,00	110,00		
16,0	121,60	108,80	99,20	172,80	153,60	140,80		
20,0	152,00	136,00	124,00	216,00	192,00	176,00		
25,0	190,00	170,00	155,00	270,00	240,00	220,00		




PARTE II – ELEMENTOS GRÁFICOS







LONGARINA (5x) ESCALA 1/50

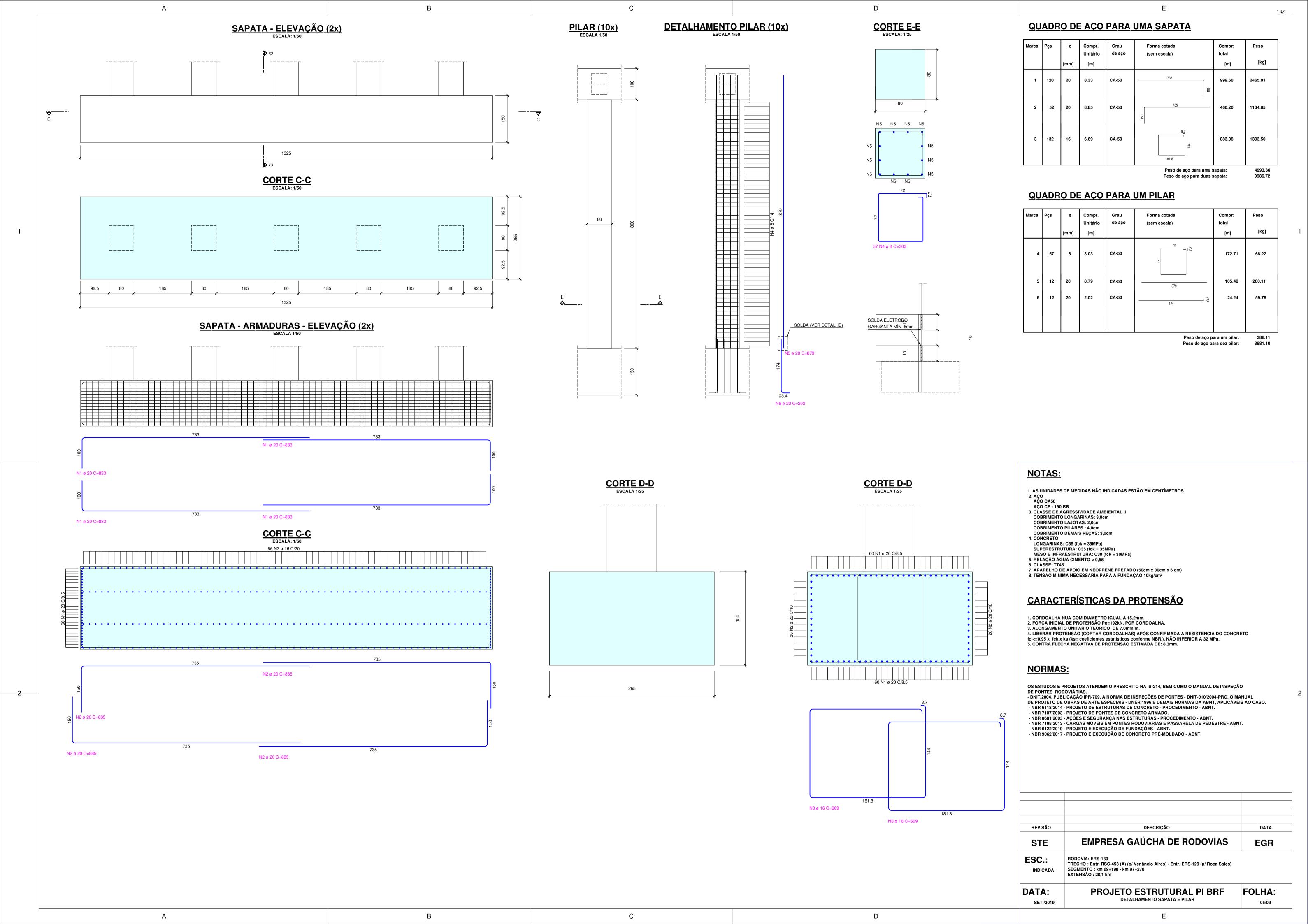
NOTAS:

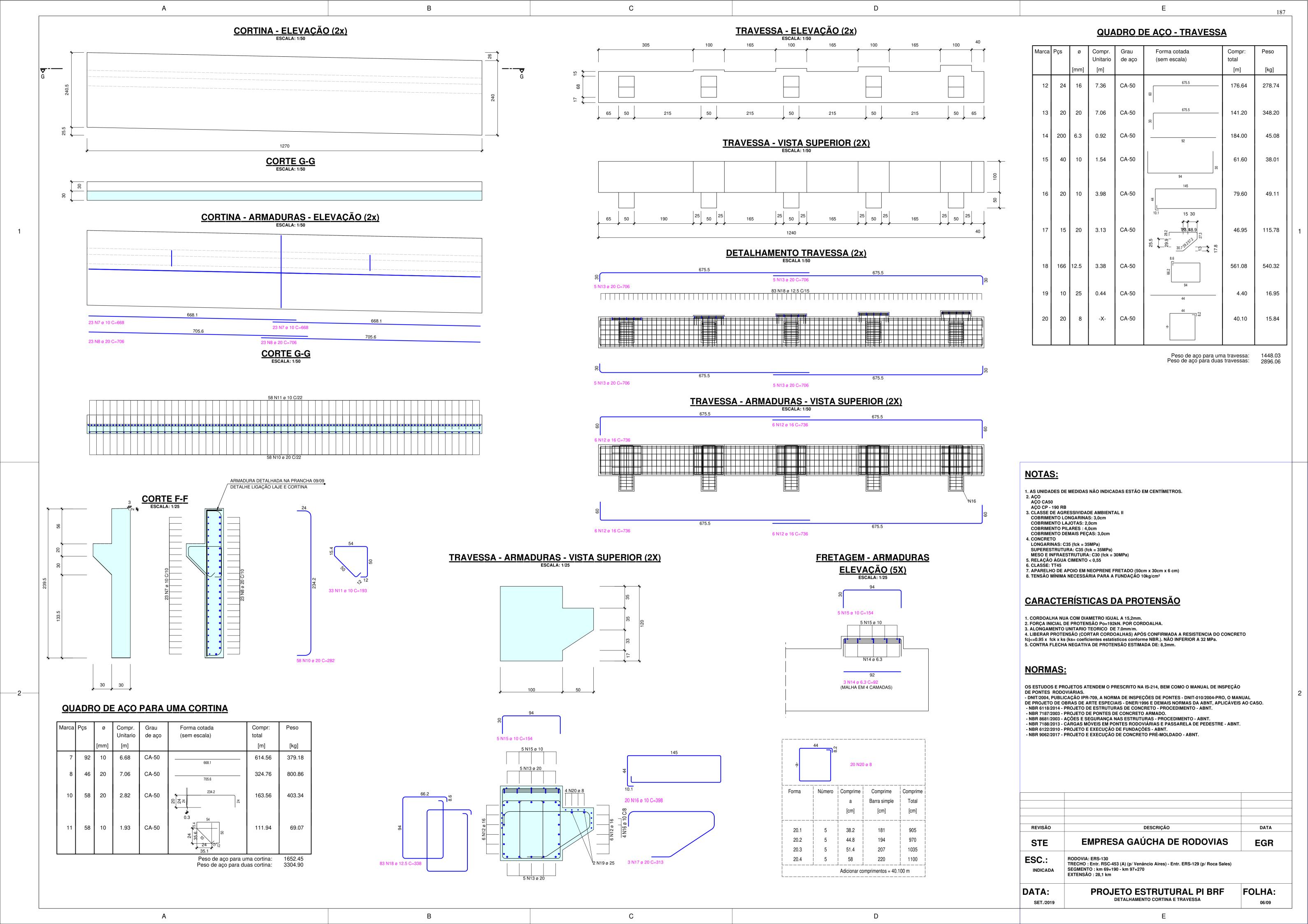
- 1. AS UNIDADES DE MEDIDAS NÃO INDICADAS ESTÃO EM CENTÍMETROS.
- 2. AÇO
 AÇO CA50
 AÇO CP 190 RB
 3. CLASSE DE AGRESSIVIDADE AMBIENTAL II
 COBRIMENTO LONGARINAS: 3,0cm
- COBRIMENTO LAJOTAS: 2,0cm COBRIMENTO PILARES: 4,0cm
- COBRIMENTO DEMAIS PEÇAS: 3,0cm 4. CONCRETO LONGARINAS: C35 (fck = 35MPa)
- SUPERESTRUTURA: C35 (fck = 35MPa)
 MESO E INFRAESTRUTURA: C30 (fck = 30MPa)
- 5. RELAÇÃO ÁGUA CIMENTO < 0,55
- 6. CLASSE: TT45
- 7. APARELHO DE APOIO EM NEOPRENE FRETADO (50cm x 30cm x 6 cm) 8. TENSÃO MÍNIMA NECESSÁRIA PARA A FUNDAÇÃO 10kg/cm²

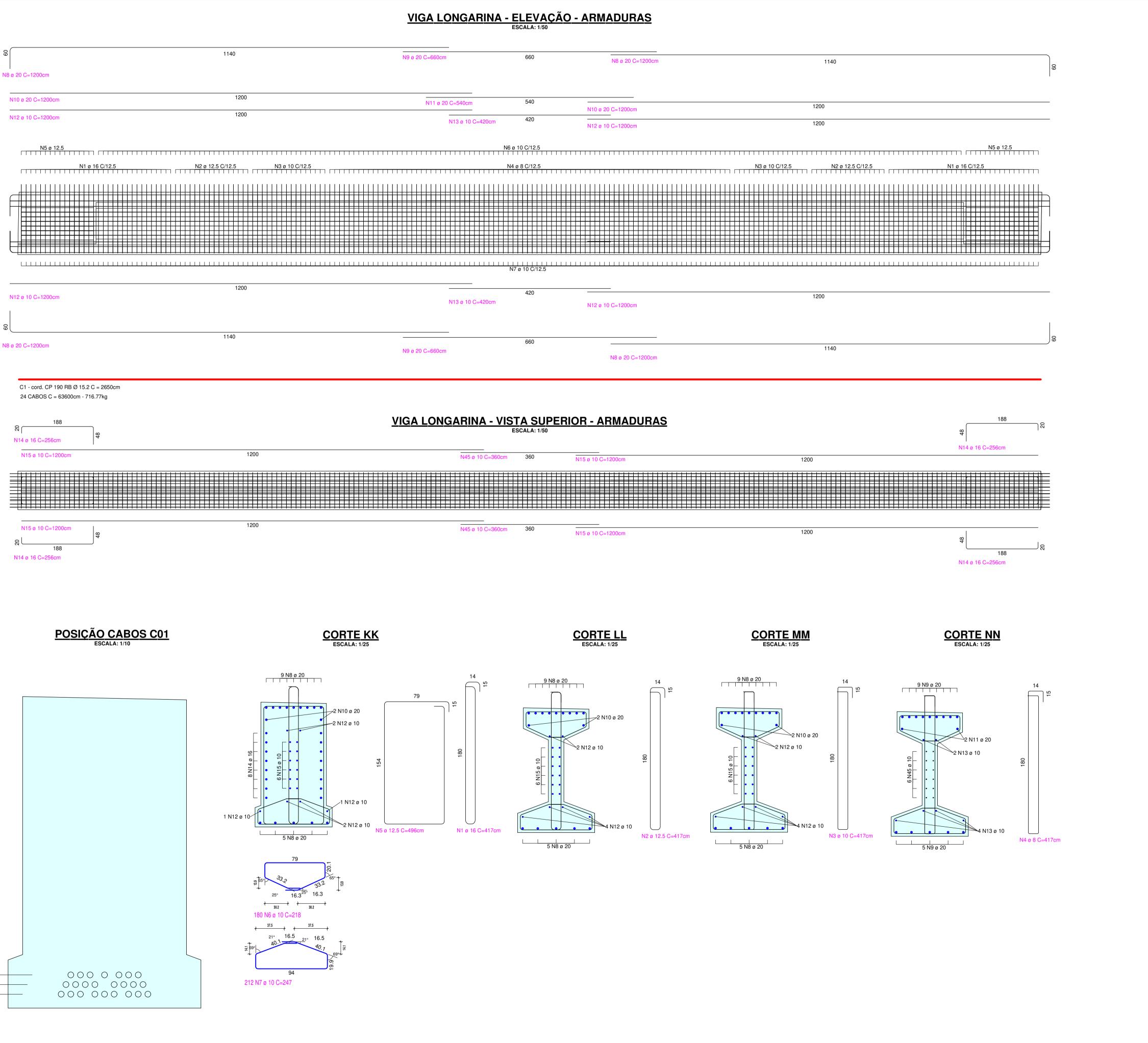
CARACTERÍSTICAS DA PROTENSÃO

- 1. CORDOALHA NUA COM DIAMETRO IGUAL A 15,2mm.
 2. FORÇA INICIAL DE PROTENSÃO Po=192kN. POR CORDOALHA.
 3. ALONGAMENTO UNITARIO TEORICO DE 7.0mm/m.
 4. LIBERAR PROTENSÃO (CORTAR CORDOALHAS) APÓS CONFIRMADA A RESISTENCIA DO CONCRETO fcj<=0.95 x fck x ks (ks= coeficientes estatísticos conforme NBR.). NÃO INFERIOR A 32 MPa.
 5. CONTRA FLECHA NEGATIVA DE PROTENSÃO ESTIMADA DE: 8,3mm.

NORMAS:


- OS ESTUDOS E PROJETOS ATENDEM O PRESCRITO NA IS-214, BEM COMO O MANUAL DE INSPEÇÃO DE PONTES RODOVIÁRIAS.
 DNIT/2004, PUBLICAÇÃO IPR-709, A NORMA DE INSPEÇÕES DE PONTES DNIT-010/2004-PRO, O MANUAL DE PROJETO DE OBRAS DE ARTE ESPECIAIS DNER/1996 E DEMAIS NORMAS DA ABNT, APLICÁVEIS AO CASO.
- NBR 6118/2014 PROJETO DE ESTRUTURAS DE CONCRETO PROCEDIMENTO ABNT.
- NBR 7187/2003 PROJETO DE PONTES DE CONCRETO ARMADO. - NBR 8681/2003 - AÇÕES E SEGURANÇA NAS ESTRUTURAS - PROCEDIMENTO - ABNT.
- NBR 7188/2013 CARGAS MÓVEIS EM PONTES RODOVIÁRIAS E PASSARELA DE PEDESTRE ABNT. NBR 6122/2010 PROJETO E EXECUÇÃO DE FUNDAÇÕES ABNT.
- NBR 9062/2017 PROJETO E EXECUÇÃO DE CONCRETO PRÉ-MOLDADO ABNT.


REVISÃO	DESCRIÇÃO	DATA
STE	EMPRESA GAÚCHA DE RODOVIAS	EGR
SC.:	RODOVIA: ERS-130 TRECHO: Entr. RSC-453 (A) (p/ Venâncio Aires) - Entr. ERS-129 (p/ Roca Sales) SEGMENTO: km 69+190 - km 97+270 EXTENSÃO: 28,1 km	


FOLHA:

04/09

DATA:	PROJETO ESTRUTURAL PI BRF
SET./2019	FORMAS LONGARINA, LAJOTAS E GUARDA RODAS

QUADRO DE AÇO - LONGARINA

Marca	Pçs	Ø	Compr. Unitario	Grau de aço	Forma cotada (sem escala)	Compr: total	Peso
		[mm]	[m]			[m]	[kg]
1	64	16	4.17	CA-50	14.6	266.88	421.14
2	32	12.5	4.17	CA-50	179.7 15	133.44	128.50
3	32	10	4.17	CA-50	179.7 14.6	133.44	82.33
4	84	8	4.17	CA-50	179.7 14.6 179.7	350.28	138.36
5	32	12.5	4.96	CA-50	15 62	158.72	152.85
6	180	10	2.18	CA-50	154 79 163/63/44.5 65: E1	392.40	242.11
7	212	10	2.47	CA-50	41 16.316.3 ⁴ 4.5 * 42 * 430.2* 430.2* 430.2* 430.2* 45.5 * 45.5	523.64	323.09
8	28	20	12.00	CA-50	94	336.00	828.58
9	14	20	6.60	CA-50	1140	92.40	227.86
10	4	20	12.00	CA-50	1200	48.00	118.37
11	2	20	5.40	CA-50	540	10.80	26.63
12	12	10	12.00	CA-50	1200	144.00	88.85
13	6	10	4.20	CA-50	420	25.20	15.55
14	32	16	2.56	CA-50	188	81.92	129.27
15	24	10	12.00	CA-50	1200	288.00	177.70
16	12	10	3.60	CA-50	360	43.20	26.65

Peso de aço para uma longarina: 3127.84 Peso de aço para cinco longarina: 15639.20

NOTAS:

1. AS UNIDADES DE MEDIDAS NÃO INDICADAS ESTÃO EM CENTÍMETROS.

2. AÇO AÇO CA50

AÇO CP - 190 RB 3. CLASSE DE AGRESSIVIDADE AMBIENTAL II

COBRIMENTO LONGARINAS: 3,0cm

COBRIMENTO LAJOTAS: 2,0cm **COBRIMENTO PILARES: 4,0cm** COBRIMENTO DEMAIS PEÇAS: 3,0cm

4. CONCRETO LONGARINAS: C35 (fck = 35MPa)

SUPERESTRUTURA: C35 (fck = 35MPa) MESO E INFRAESTRUTURA: C30 (fck = 30MPa)

5. RELAÇÃO ÁGUA CIMENTO < 0.55

6. CLASSE: TT45 7. APARELHO DE APOIO EM NEOPRENE FRETADO (50cm x 30cm x 6 cm) 8. TENSÃO MÍNIMA NECESSÁRIA PARA A FUNDAÇÃO 10kg/cm²

CARACTERÍSTICAS DA PROTENSÃO

1. CORDOALHA NUA COM DIAMETRO IGUAL A 15,2mm. 2. FORÇA INICIAL DE PROTENSÃO Po=192kN. POR CORDOALHA.

3. ALONGAMENTO UNITARIO TEORICO DE 7.0mm/m.

fcj<=0.95 x fck x ks (ks= coeficientes estatísticos conforme NBR.). NÃO INFERIOR A 32 MPa.

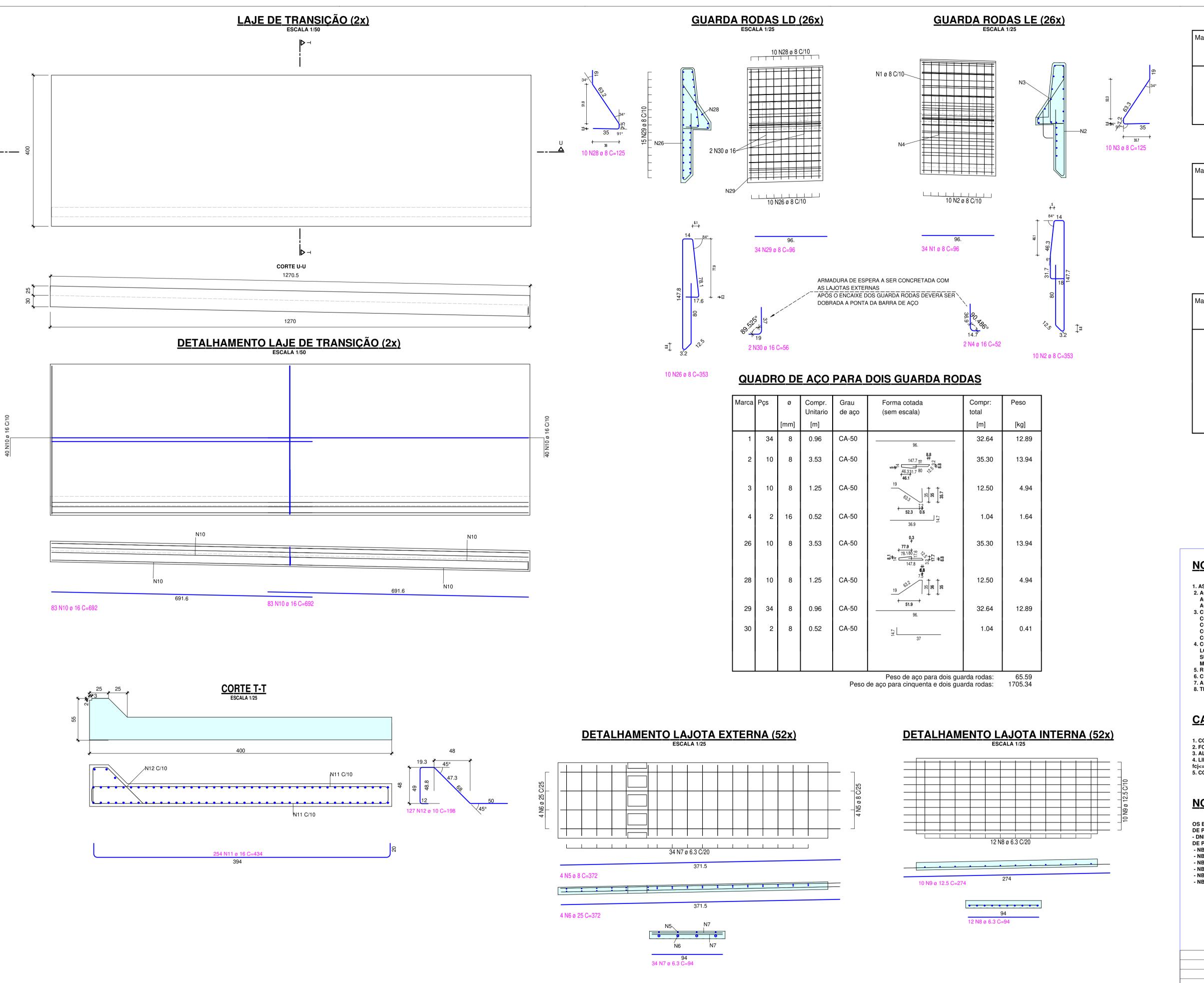
4. LIBERAR PROTENSÃO (CORTAR CORDOALHAS) APÓS CONFIRMADA A RESISTENCIA DO CONCRETO 5. CONTRA FLECHA NEGATIVA DE PROTENSÃO ESTIMADA DE: 8,3mm.

NORMAS:

OS ESTUDOS E PROJETOS ATENDEM O PRESCRITO NA IS-214, BEM COMO O MANUAL DE INSPEÇÃO

DE PONTES RODOVIÁRIAS. - DNIT/2004, PUBLICAÇÃO IPR-709, A NORMA DE INSPEÇÕES DE PONTES - DNIT-010/2004-PRO, O MANUAL

DE PROJETO DE OBRAS DE ARTE ESPECIAIS - DNER/1996 E DEMAIS NORMAS DA ABNT, APLICÁVEIS AO CASO.


- NBR 6118/2014 - PROJETO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO - ABNT. - NBR 7187/2003 - PROJETO DE PONTES DE CONCRETO ARMADO.

- NBR 8681/2003 - AÇÕES E SEGURANCA NAS ESTRUTURAS - PROCEDIMENTO - ABNT. - NBR 7188/2013 - CARGAS MÓVEIS EM PONTES RODOVIÁRIAS E PASSARELA DE PEDESTRE - ABNT.

- NBR 6122/2010 - PROJETO E EXECUÇÃO DE FUNDAÇÕES - ABNT.

- NBR 9062/2017 - PROJETO E EXECUÇÃO DE CONCRETO PRÉ-MOLDADO - ABNT.

REVISÃO	DESCRIÇÃO	DATA
REVISAO	DESCRIÇÃO	DATA
OTE	EMPRESA GAÚCHA DE RODOVIAS	500
STE	EMPRESA GAUCHA DE RODUVIAS	EGR
ESC.:	RODOVIA: ERS-130	
INDICADA	TRECHO: Entr. RSC-453 (A) (p/ Venâncio Aires) - Entr. ERS-129 (p/ Roca Sales) SEGMENTO: km 69+190 - km 97+270	
INDICADA	EXTENSÃO : 28,1 km	
	DDO IETO ECTRUTURAL DI DDE	EOI HA
DATA:	PROJETO ESTRUTURAL PI BRF	FOLHA
SET./2019	DETALHAMENTO LONGARINA	07/09

QUADRO DE AÇO - LAJOTA EXTERNA

Marca	Pçs	Ø	Compr. Unitario	Grau de aço	Forma cotada (sem escala)	Compr: total	Peso
		[mm]	[m]			[m]	[kg]
5	4	8	3.72	CA-50	371.5	14.88	5.88
6	4	25	3.72	CA-50	371.5	14.88	57.33
7	34	6.3	0.94	CA-50	94	31.96	7.83

Peso de aço para uma lajota: Peso de aço para 52 lajotas:

QUADRO DE AÇO - LAJOTA INTERNA

Marca	Pçs	Ø	Compr. Único	Grau de aço	Forma flexão cotado (sem escala)	Compr: total	Massa	
		[mm]	[m]			[m]	[kg]	
8	10	12.5	2.74	CA-50	274	27.40	26.39	
9	12	6.3	0.94	CA-50	94	11.28	2.76	
					Peso de aco para um	a laiota:	20.15	-

Peso de aço para 52 lajotas: 1515.80

QUADRO DE AÇO - LAJE DE TRANSIÇÃO

Marca	Pçs	Ø	Compr. Unitario	Grau de aço	Forma cotada (sem escala)	Compr: total	Peso		
		[mm]	[m]			[m]	[kg]		
10	166	16	6.92	CA-50	691.6	1148.72	1812.68		
11	254	16	4.34	CA-50	୍ଷ 39 4 5.5	1102.36	1739.52		
12	127	10	1.98	CA-50	19.3 47.3 95 47.3 12 50	251.46	155.15		
	Peso de aco para uma laje de transição: 3707 35								

Peso de aço para uma laje de transição: Peso de aço para duas lajes de transição:

NOTAS:

- 1. AS UNIDADES DE MEDIDAS NÃO INDICADAS ESTÃO EM CENTÍMETROS.
- 2. AÇO AÇO CA50 AÇO CP - 190 RB
- 3. CLASSE DE AGRESSIVIDADE AMBIENTAL II COBRIMENTO LONGARINAS: 3,0cm
- COBRIMENTO LAJOTAS: 2,0cm **COBRIMENTO PILARES: 4,0cm**
- COBRIMENTO DEMAIS PEÇAS: 3,0cm 4. CONCRETO
- LONGARINAS: C35 (fck = 35MPa) SUPERESTRUTURA: C35 (fck = 35MPa)
- MESO E INFRAESTRUTURA: C30 (fck = 30MPa) 5. RELAÇÃO ÁGUA CIMENTO < 0,55
- 6. CLASSE: TT45 7. APARELHO DE APOIO EM NEOPRENE FRETADO (50cm x 30cm x 6 cm) 8. TENSÃO MÍNIMA NECESSÁRIA PARA A FUNDAÇÃO 10kg/cm²

CARACTERÍSTICAS DA PROTENSÃO

- 1. CORDOALHA NUA COM DIAMETRO IGUAL A 15,2mm. 2. FORÇA INICIAL DE PROTENSÃO Po=192kN. POR CORDOALHA.
- 3. ALONGAMENTO UNITARIO TEORICO DE 7.0mm/m. 4. LIBERAR PROTENSÃO (CORTAR CORDOALHAS) APÓS CONFIRMADA A RESISTENCIA DO CONCRETO
- fcj<=0.95 x fck x ks (ks= coeficientes estatísticos conforme NBR.). NÃO INFERIOR A 32 MPa.

 5. CONTRA FLECHA NEGATIVA DE PROTENSÃO ESTIMADA DE: 8,3mm.

NORMAS:

OS ESTUDOS E PROJETOS ATENDEM O PRESCRITO NA IS-214, BEM COMO O MANUAL DE INSPEÇÃO DE PONTES RODOVIÁRIAS. - DNIT/2004, PUBLICAÇÃO IPR-709, A NORMA DE INSPEÇÕES DE PONTES - DNIT-010/2004-PRO, O MANUAL DE PROJETO DE OBRAS DE ARTE ESPECIAIS - DNER/1996 E DEMAIS NORMAS DA ABNT, APLICÁVEIS AO CASO.

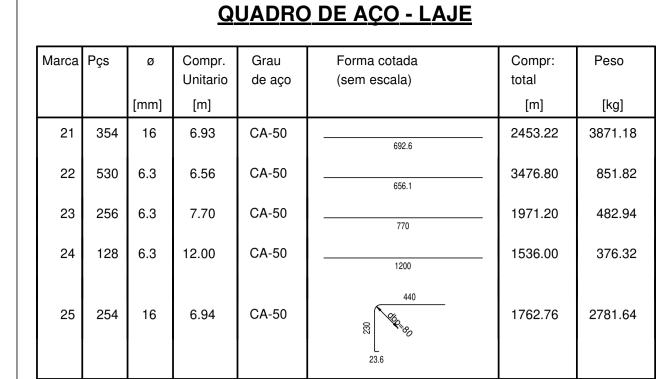
- NBR 6118/2014 - PROJETO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO - ABNT. - NBR 7187/2003 - PROJETO DE PONTES DE CONCRETO ARMADO.

- NBR 7187/2003 - PROSETO DE PONTES DE CONCRETO ARMADO.
- NBR 8681/2003 - AÇÕES E SEGURANÇA NAS ESTRUTURAS - PROCEDIMENTO - ABNT.
- NBR 7188/2013 - CARGAS MÓVEIS EM PONTES RODOVIÁRIAS E PASSARELA DE PEDESTRE - ABNT.

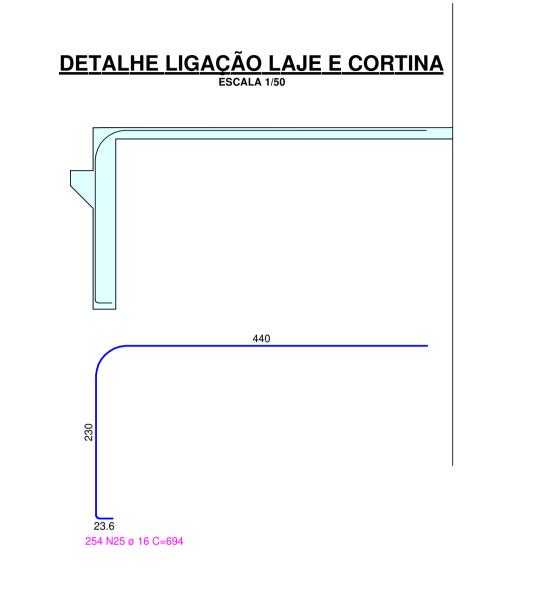
- NBR 6122/2010 - PROJETO E EXECUÇÃO DE FUNDAÇÕES - ABNT. - NBR 9062/2017 - PROJETO E EXECUÇÃO DE CONCRETO PRÉ-MOLDADO - ABNT.

STE	EMPRESA GAÚCHA DE RODOVIAS	EGR
REVISÃO	DESCRIÇÃO	DATA

ESC.:	RODOVIA: ERS-130


EXTENSÃO : 28,1 km

TRECHO: Entr. RSC-453 (A) (p/ Venâncio Aires) - Entr. ERS-129 (p/ Roca Sales) SEGMENTO : km 69+190 - km 97+270


D	ATA:	PROJETO ESTRUTURAL PI BRF
	SET./2019	DETALHAMENTO LAJOTAS, LAJE DE TRANSIÇÃO E GUARDA RODAS

FOLHA: 08/09

EGR

Peso total de aço para a laje: 8363.90

1. AS UNIDADES DE MEDIDAS NÃO INDICADAS ESTÃO EM CENTÍMETROS. 2. AÇO AÇO CA50 AÇO CP - 190 RB 3. CLASSE DE AGRESSIVIDADE AMBIENTAL II COBRIMENTO LONGARINAS: 3,0cm COBRIMENTO LAJOTAS: 2,0cm **COBRIMENTO PILARES: 4,0cm** COBRIMENTO DEMAIS PEÇAS: 3,0cm 4. CONCRETO LONGARINAS: C35 (fck = 35MPa)
SUPERESTRUTURA: C35 (fck = 35MPa)
MESO E INFRAESTRUTURA: C30 (fck = 30MPa)
5. RELAÇÃO ÁGUA CIMENTO < 0,55

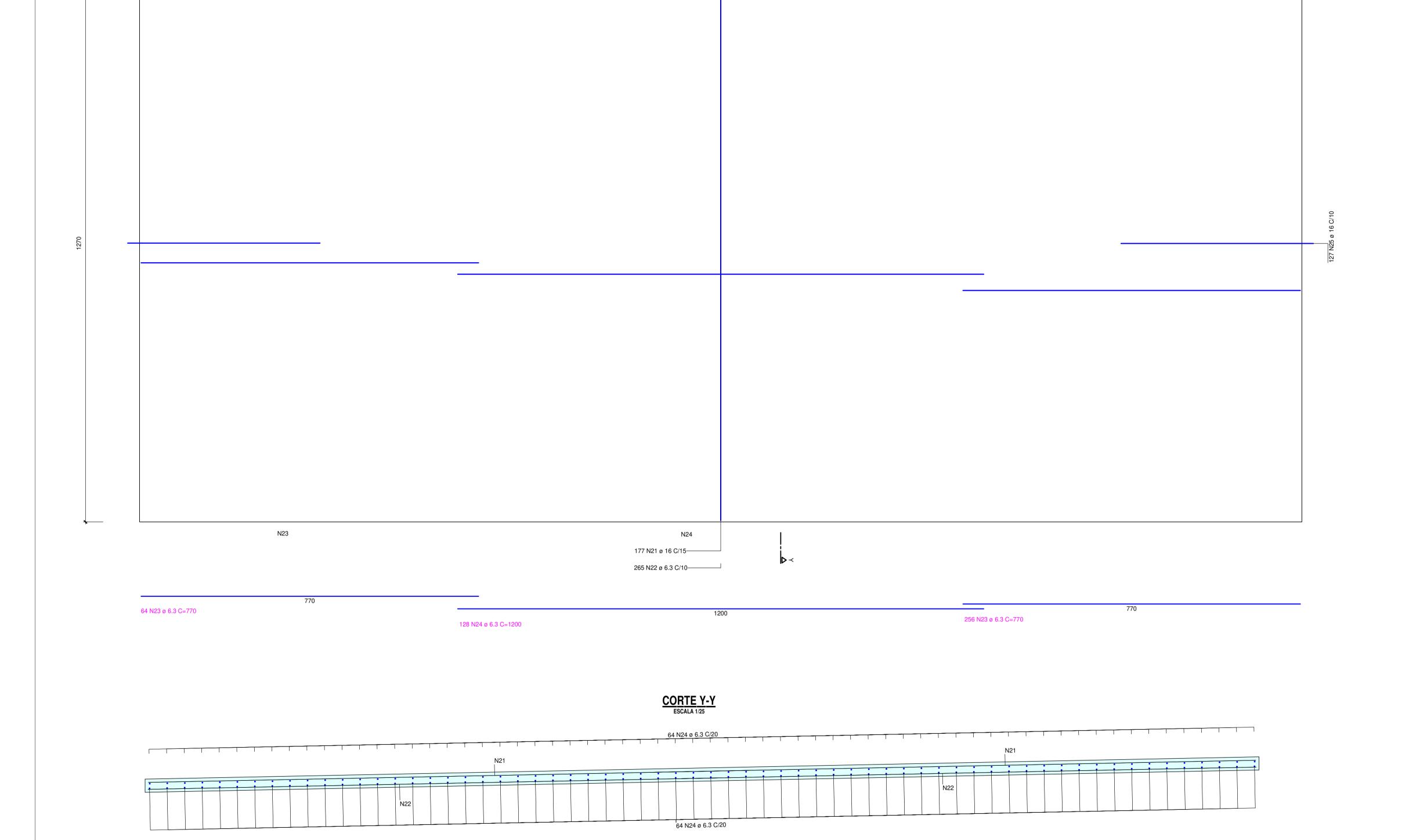
6. CLASSE: TT45 7. APARELHO DE APOIO EM NEOPRENE FRETADO (50cm x 30cm x 6 cm) 8. TENSÃO MÍNIMA NECESSÁRIA PARA A FUNDAÇÃO 10kg/cm²

CARACTERÍSTICAS DA PROTENSÃO

1. CORDOALHA NUA COM DIAMETRO IGUAL A 15,2mm. 2. FORÇA INICIAL DE PROTENSÃO Po=192kN. POR CORDOALHA.
3. ALONGAMENTO UNITARIO TEORICO DE 7.0mm/m. 4. LIBERAR PROTENSÃO (CORTAR CORDOALHAS) APÓS CONFIRMADA A RESISTENCIA DO CONCRETO fcj<=0.95 x fck x ks (ks= coeficientes estatísticos conforme NBR.). NÃO INFERIOR A 32 MPa. 5. CONTRA FLECHA NEGATIVA DE PROTENSÃO ESTIMADA DE: 8,3mm.

NORMAS:

OS ESTUDOS E PROJETOS ATENDEM O PRESCRITO NA IS-214, BEM COMO O MANUAL DE INSPEÇÃO DE PONTES RODOVIÁRIAS. - DNIT/2004, PUBLICAÇÃO IPR-709, A NORMA DE INSPEÇÕES DE PONTES - DNIT-010/2004-PRO, O MANUAL DE PROJETO DE OBRAS DE ARTE ESPECIAIS - DNER/1996 E DEMAIS NORMAS DA ABNT, APLICÁVEIS AO CASO. - NBR 6118/2014 - PROJETO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO - ABNT. - NBR 7187/2003 - PROJETO DE PONTES DE CONCRETO ARMADO.


- NBR 8681/2003 - AÇÕES E SEGURANÇA NAS ESTRUTURAS - PROCEDIMENTO - ABNT. - NBR 7188/2013 - CARGAS MÓVEIS EM PONTES RODOVIÁRIAS E PASSARELA DE PEDESTRE - ABNT. - NBR 6122/2010 - PROJETO E EXECUÇÃO DE FUNDAÇÕES - ABNT. - NBR 9062/2017 - PROJETO E EXECUÇÃO DE CONCRETO PRÉ-MOLDADO - ABNT.

REVISÃO	DESCRIÇÃO	DATA
STE	EMPRESA GAÚCHA DE RODOVIAS	EGR
ESC.:	RODOVIA: ERS-130 TRECHO: Entr. RSC-453 (A) (p/ Venâncio Aires) - Entr. ERS-129 (p/ Roca Sales) SEGMENTO: km 69+190 - km 97+270 EXTENSÃO: 28.1 km	

FOLHA:

09/09

DATA: PROJETO ESTRUTURAL PI BRF DETALHAMENTO LAJE DO TABULEIRO SET./2019

177 N21 ø 16 C=693

265 N22 ø 6.3 C=656

692.6

656.1

177 N21 ø 16 C=693

265 N22 ø 6.3 C=656

692.6

656.1

LAJE (1x) ESCALA 1/50

265 N22 ø 6.3 C/10----

177 N21 ø 16 C/15----

PARTE III – QUADRO DE QUANTIDADES

		QUADRO DE QUANTIDADES		
Item	Código	Discriminação	Unid.	Quantidade
1		PASSAGEM INFERIOR BRF		
1.1		SAPATA		
1.1.1	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	95,40
1.1.2	1107900	CONCRETO FCK = 30 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M^3	105,34
1.1.3	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	105,34
1.1.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	9.986,72
1.1.5	4805757	ESCAVAÇÃO MECÂNICA DE VALA EM MATERIAL DE 1ª CATEGORIA	M³	226,92
1.1.6	4805758	ESCAVAÇÃO MECÂNICA COM REATERRO E COMPACTAÇÃO DE VALA EM MATERIAL DE 1ª CATEGORIA	M^3	121,58
1.1.7	1106057	CONCRETO MAGRO - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	7,02
1.1.8		PILARES		
1.1.9	1107900	CONCRETO FCK = 30 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	51,20
1.1.10	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M³	51,20
1.1.11	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M ²	256,00
1.1.12	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	3.881,10
1.1.13	2108172	ESCORAMENTO COM PONTALETES D = 15 CM - UTILIZAÇÃO DE 5 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M ³	256,00
1.2		VIGAS LONGARINAS PRÉ-MOLDADAS		
1.2.1	1107904	CONCRETO FCK = 35 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	116,88
1.2.2	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	116,88
1.2.3	3108017	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 3 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	670,12
1.2.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	15.639,20
1.2.5	4507957	CORDOALHA CP 190 RB D = 15,2 MM - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	716,77
1.2.6	4507776	ANCORAGEM ATIVA COM UMA CORDOALHA ADERENTE D = 15,2mm COM PLACA DE ANCORAGEM, CUNHA TRIPARTIDA E PROTENSÃO	UN	120,00
1.2.7	3806420	LANÇAMENTO DE VIGA PRÉ-MOLDADA DE ATÉ 500 KN COM UTILIZAÇÃO DE GUINDASTE	UN	5,00
1.2.8	5915366	CARGA, DESCARGA E MANOBRA DE VIGAS PRÉ-MOLDADAS DE ATÉ 500 KN EM CAVALO MECÂNICO COM REBOQUE DE 6 EIXOS COM CAPACIDADE DE 207 T	T	308,54
1.2.9	5915361	TRANSPORTE EM CAVALO MECÂNICO COM REBOQUE DE 6 EIXOS COM CAPACIDADE DE 207 T - RODOVIA PAVIMENTADA	TKM	30.854,35
1.3		CORTINA		
1.3.1	1107900	CONCRETO FCK = 30 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	21,01
1.3.2	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	21,01
1.3.3	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	141,99
1.3.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	3.304,90
1.4		TRAVESSAS		
1.4.1	1107900	CONCRETO FCK = 30 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M^3	28,98
1.4.2	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	28,98
1.4.3	3108015	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 1 VEZ - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M ²	80,10
1.4.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	2.896,06
1.5		LAJE TABULEIRO		
1.5.1	1107904	CONCRETO FCK = 35 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	54,06
1.5.2	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	54,06

QUADRO DE QUANTIDADES				
Item	Código	Discriminação	Unid.	Quantidade
1.5.3	3108017	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 3 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	24,36
1.5.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	8.363,90
1.6		LAJES PRÉ-MOLDADAS (LAJOTAS EXTERNAS)		
1.6.1	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	51,16
1.6.2	1107904	CONCRETO FCK = 35 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	18,59
1.6.3	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M³	18,59
1.6.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	3.694,08
1.6.5	3806426	LANÇAMENTO DE PRÉ-LAJE COM UTILIZAÇÃO DE GUINDAUTO	T	50,17
1.7		LAJES PRÉ-MOLDADAS (LAJOTAS INTERNAS)		
1.7.1	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M^2	37,76
1.7.2	1107904	CONCRETO FCK = 35 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	12,48
1.7.3	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	12,48
1.7.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	1.515,80
1.7.5	3806426	LANÇAMENTO DE PRÉ-LAJE COM UTILIZAÇÃO DE GUINDAUTO	T	32,72
1.8		GUARDA RODAS (PRE MOLDADO)		
1.8.1	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M²	113,97
1.8.2	1107904	CONCRETO FCK = 35 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M^3	16,22
1.8.3	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M ³	16,22
1.8.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	1.705,34
1.8.5	3806426	LANÇAMENTO DE PRÉ-LAJE COM UTILIZAÇÃO DE GUINDAUTO	T	42,27
1.9		LAJE DE TRANSIÇÃO		
1.9.1	1107900	CONCRETO FCK = 30 MPA - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M^3	32,07
1.9.2	1100657	ADENSAMENTO DE CONCRETO POR VIBRADOR DE IMERSÃO	M^3	32,07
1.9.3	3108016	FORMAS DE COMPENSADO PLASTIFICADO 14 MM - USO GERAL - UTILIZAÇÃO DE 2 VEZES - CONFECÇÃO, INSTALAÇÃO E RETIRADA	M²	83,79
1.9.4	407819	ARMAÇÃO EM AÇO CA-50 - FORNECIMENTO, PREPARO E COLOCAÇÃO	KG	7.414,70
1.9.5	1106057	CONCRETO MAGRO - CONFECÇÃO EM BETONEIRA E LANÇAMENTO MANUAL - AREIA E BRITA COMERCIAIS	M³	10,16
1.10		OUTROS SERVIÇOS		
1.10.1	2007971	DRENO DE PVC D = 100 MM - FORNECIMENTO E INSTALAÇÃO	М	4,50
1.10.2	307733	Junta de dilatação em perfil extrudado de borracha vulcanizada de 20 x 40 mm - fornecimento e instalação	M	25,40
1.10.3	307731	APARELHO DE APOIO DE NEOPRENE FRETADO PARA ESTRUTURAS MOLDADAS NO LOCAL - FORNECIMENTO E INSTALAÇÃO	DM³	90,00
1.10.4	5406043	Aterro compactado em solo reforçado com fita metálica galvanizada - taxa 9,92 kg/m³ - material de jazida	M³	3.759,20
1.10.5	5405971	Fabricação de escama de concreto armado para solo reforçado com fita metálica - 6 a 8 chumbadores - areia e brita comerciais	M³	115,04
1.10.6	5405986	Moldes metálicos para solo reforçado com fita metálica - formato cruciforme de 1,50 x 1,50 m - utilização de 100 vezes	M³	115,04
1.10.7	5406023	Muro de escama de concreto armado em solo reforçado com fita metálica com altura até 4 m - tipo 1 - areia e brita comerciais	M²	360,00
1.10.8	5406025	Muro de escama de concreto armado em solo reforçado com fita metálica com altura de 4,0 a 6 m - tipo 1 - areia e brita comerciais	M²	190,00
1.10.9	5406027	Muro de escama de concreto armado em solo reforçado com fita metálica com altura de 6,0 a 8 m - tipo 1 - areia e brita comerciais	M²	169,00